SHIVVRAT ARYA

Dallas TX 75252 Cell: +1-(469)-920-1992

EDUCATION

Doctor of Philosophy in Computer Science	Expected May 2024
THE UNIVERSITY OF TEXAS AT DALLAS, Richardson, Texas	GPA: 4.0/4.0
Master of Science in Computer Science	Expected May 2021
THE UNIVERSITY OF TEXAS AT DALLAS, Richardson, Texas	GPA: 4.0/4.0
Bachelor of Technology in Computer Science and Engineering	May 2019
INDIAN INSTITUTE OF INFORMATION TECHNOLOGY VADODARA (IIITV), India	GPA: 8.39/10

RESEARCH INTERESTS

Self-supervised learning, Graph Neural Networks, Action Anticipation, Action Recognition, Image Classification, Graphical Models, Tractable Models

COMPUTER SKILLS

Languages	: Python, JAVA, Octave, C
Operating Systems	: Windows, Linux
Databases	: PostgreSQL, SQL
Neural Network Framework Frameworks and Tools Productivity Suite Version Control System	 : GNN, CNN, RNN, ANN, AE, MC, DCN : TensorFlow, Pandas, Scikit-Learn, Numpy, Matplotlib, Seaborn : MS Office, LaTeX, Libre Office, Movie Maker : Git

HARD SKILLS

Mathematics	: Probability and Statistics, Linear Algebra, Multivariate Calculus		
Optimization techniques	: Gradient descent, Hill climbing, Genetic algorithm, Ant colony optimization,		
	Bacterial Foraging Optimization and, Cat swarm optimization.		

PUBLICATIONS

Journal Papers

- 1. Vikas Chauhan, Aruna Tiwari and Shivvrat Arya. "Multi-label Classification based on Broad Learning System". Neural Computing and Applications Journal, Dec 2019 [Under Review]
- 2. Vikas Chauhan, Aruna Tiwari and Shivvrat Arya. "Multi-label Classification based on Random Vector Functional Link Neural Networks", *Soft Computing Journal*, Jan 2020 [Under Review]

Conference Papers

 Vikas Chauhan, Aruna Tiwari and Shivvrat Arya. "Multi-Label classifier based on Kernel Random Vector Functional Link Network", International Joint Conference on Neural Networks, Jan 2020

TEACHING EXPERIENCE

Teaching Assistant, Department of Computer Science, University of Texas at Dallas, US Aug 2020 - Current **Duties:** Graded assignments, conducted office hours and prepared homework solutions for selected courses **Courses**: Statistical Methods in AI and Machine Learning, Database Systems, Discrete Mathematics for Computing II

RESEARCH PROJECTS

Explainable Activity Recognition in Videos Implemented a video recognition task using two layer architecture - probabilistic graphical model on top of a convolutional neural network. The PGM layer helps to correct the noisy labels and benefit from temporal information.

Programming Language Set: Python

ACADEMIC AND PERSONAL PROJECTS

Learning algorithms for Bayesian Netw	<u>vorks</u> PGM	Spring 2020
Implementation of various structure and	d parameter learning algorithms for Bayesian ne	etworks
Programming Language Set: Python		
Sampling-based-Variable-Elimination-a	and-Conditioning PGM	Spring 2020
Implementation of the Sampling-based	Variable Elimination and Conditioning algorithm) for inference on PGM's
Programming Language Set: Python		
Non Iterative Neural Network	Machine Learning	Fall 2019
Implemented two non-iterative neural r on various datasets.	network methods, RVFL and ELM to do classifica	ation and regression tasks
Programming Language Set: Python		
DART Database	Database Design	Fall 2019
Implemented the complete database f	or the DART system. Designed the EER diagra	m, converted the EER to
relational schema, created the database	e on SQL and created views and queries for the c	database.
Programming Language Set: SQL		
Compressed Sensing	Computer Vision	Fall 2018
Title: Implementation of compressed se	nsing for multi-view tracking and 3-d voxel reco	instruction
Implemented and evaluated the algorit	hm mentioned in the above paper, which create	e 3d voxel from the given
2d Images and it is being used for the pu	urpose of multi-view tracking.	
Programming Language Set. MATLAD		
<u>Kakuro solver</u>	Artificial Intelligence	Spring 2018
Designed a bot to solve the Kakuro put	zzles by deriving the rules and handling differe	ent instances to crack the
kakuro puzzles.		
Programming Language Set: Python		
Autoencoder for anomaly detection	Deep Learning	Spring 2018
Devised and implemented a method to	utilize autoencoders for anomaly detection an	id tested it on credit card
fraud dataset of Kaggle.		
Programming Language Set: Python		
<u>LEARN</u>	Compiler Design	Spring 2018
Generated a new programming langua	age which is based on English verbs and only	requires a newcomer to
emphasize on programming constructs.	LEARN was designed using yacc and lex.	
Programming Language Set: LEX, YACC,	ana C	
Fatal Disease Detector	IIITV Hackathon	Fall 2018
Implemented the k-means algorithm for	r the detection of calamitous disease spread by	using twitter data.

SoT (Security of Things) Cryptography

Programming Language Set: Python

Fall 2020

Built the android app for the project which helped the user to know the real-time temperature changes in the environment in which the machine was present and implemented the Advanced Encryption Standard (AES) for encryption purposes.

Programming Language Set: Python and C

Hardware: Arduino, Raspberry Pie, and various Sensors

Hatsphere

Software Development

Fall 2017

Developed the seller android app for Hatsphere, which was then connected to the main server to provide ecommerce experience to traditional craftsmen.

Programming Language Set: JAVA, Android and Django

Cocktail Party Effect

Speech Science and Technology

Fall 2017

Implemented the cocktail party effect algorithm to separate the voice and noise from the given audio signal. Programming Language Set: Python and Octave

Movie Recommender

Database Management Spring 2016 Utilized the libpq-C code which was used to provide a User Interface for the Database and implemented the Database Management System and generated data to be used for the database. Programming Language Set: PostgreSQL and C

WORK EXPERIENCE

Research Intern, Indian Institute of Technology Indore January 2019 to May 2019 / May 2018 to July 2018 Description: Investigated the problem of multi-label classification and summarized the performance of various deep learning architectures for multi-label classification.

Programming Language and Framework Set: Python and Octave.

Skill Set: Machine Learning and Deep Learning

Android Development Intern, TechnoUniverse, Indore, India May 2017 to July 2017 Organization: TechnoUniverse Description: Developed an android application named InvestoCafe. Exposure to: Android App Development

SCHOLARSHIPS

Jonsson School \$1000 Graduate Study Scholarship. Central Sector Scheme of Scholarships for College and University Students, The Department of Higher Education India

ORGANIZATIONAL RESPONSIBILITIES UNDERTAKEN

Class Representative: Vidya Sagar School (Classes - X, XI, XII) IIITV Hostel Executive Committee: 2015-2016 session IIITV Sports Committee (Core Member): 2016-2017 session, 2017-2018 session and 2018 – 2019 session IIITV Literary Society - Pensive (Core Member): 2016 to 2019 IIITV Core Organizing Team: For Events – Krieva 2016, Krieva 2017, Cerebro 2018, Ventura 2016, Ventura 2018

CERTIFICATIONS:

<u>Course</u>	<u>Certification Dates</u>	
• De	Prep Learning Specialization - Present License <u>J9V32CC6VTB5</u>	Nov 2018
• Co	onvolutional Neural Networks - Present License <u>G888N3WXPXLN</u>	Sep 2018
• Se	quence Models - Present License <u>5E9VFH59THG4</u>	Nov 2018
• Ne	eural Networks and Deep Learning - Present License JSAR6KKVC5Y7	Apr 2018
• M	achine Learning - Present License FPWNJ39A5LWQ	Mar 2018

•	Introduction to Programming with MATLAB - Present License VGPWCM8WH73K	Feb 2019
•	Mathematics for Machine Learning: Linear Algebra - Present License E5PBMECK8B4M	Apr 2019
•	Python Programming Essentials - Present License TZXYYXTF796L	Jun 2018
•	What is Data Science? - Present License 5WS64BF2G2SY	Feb 2019
•	Structuring Machine Learning Projects - Present License JJNYAQTVFUPR	May 2018
•	Improving Deep Neural Networks - Present License MRVNDFNWUHPQ	Apr 2018
•	Python Data Structures - Present License DS5N3NM69PQ6	Mar 2018
•	Programming for Everybody - Present License XS6H2XUBJ66U	Jan 2018

Udemy Course Certificates

•	The	Тор	5	Machine	Learning	Libraries	in P	ython

• MATLAB for scientists: a beginner's course

Certification Dates January 2019 January 2019