
Learning to Condition: A Neural Heuristic
for Scalable MPE Inference

Brij Malhotra
Department of Computer Science
The University of Texas at Dallas

brijgulsharan.malhotra@utdallas.edu

Shivvrat Arya
Department of Computer Science

New Jersey Institute of Technology
shivvrat.arya@njit.edu

Tahrima Rahman
Department of Computer Science
The University of Texas at Dallas

tahrima.rahman@utdallas.edu

Vibhav Gogate
Department of Computer Science
The University of Texas at Dallas
vibhav.gogate@utdallas.edu

Abstract

We introduce learning to condition (L2C), a scalable, data-driven framework for
accelerating Most Probable Explanation (MPE) inference in Probabilistic Graphical
Models (PGMs), a fundamentally intractable problem. L2C trains a neural network
to score variable-value assignments based on their utility for conditioning, given
observed evidence. To facilitate supervised learning, we develop a scalable data
generation pipeline that extracts training signals from the search traces of existing
MPE solvers. The trained network serves as a heuristic that integrates with search
algorithms, acting as a conditioning strategy prior to exact inference or as a branch-
ing and node selection policy within branch-and-bound solvers. We evaluate L2C
on challenging MPE queries involving high-treewidth PGMs. Experiments show
that our learned heuristic significantly reduces the search space while maintaining
or improving solution quality over state-of-the-art methods.

1 Introduction

Probabilistic Graphical Models (PGMs) [1], such as Bayesian Networks and Markov Networks,
efficiently encode joint probability distributions over a large set of random variables, enabling
structured reasoning under uncertainty. A fundamental inference task in these models is the Most
Probable Explanation (MPE) query, where the goal is to find the most likely assignment of values to
unobserved variables given observed evidence.

Answering MPE queries is computationally intractable in general due to their NP-hardness, and
becomes particularly challenging as model complexity and scale increase. Classical exact methods
such as AND/OR search [2, 3] and integer linear programming (ILP) [1]guarantee optimality but
are prohibitively expensive for large instances. Approximate methods offer scalability but often
compromise on solution quality or consistency, especially in domains that demand high-precision
inference.

Conditioning on a variable subset—fixing variables to specific values—is a common strategy for
improving the tractability of inference by simplifying the underlying problem structure. This reduction
in complexity can significantly shrink the search space and improve solver performance. This principle
underlies classical techniques like cutset conditioning [4] and recursive conditioning [5], as well as
strong branching heuristics [6, 7] in ILP solvers. A related concept in statistical physics is decimation
[8–12], which iteratively fixes high-impact variables to reduce the search space in message-passing
algorithms such as Survey Propagation, progressively simplifying the problem instance. However, the

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

effectiveness of these methods is highly sensitive to the choice and ordering of conditioned variables;
poor decisions can lead to significant degradation in solution quality.

This leads to a fundamental question: which variables should be fixed, to which values, and in what
order, to simplify inference while preserving the optimal solution? Fixing variables incorrectly can
irrevocably exclude the true optimal solution, whereas deferring all conditioning preserves complete-
ness but forfeits the computational benefits of simplification. Ideally, conditioning decisions should
be both safe−i.e., aligned with optimal solutions and useful−i.e., significantly reduce computational
effort.

In principle, access to the complete set of MPE solutions for a given instance would enable the
identification of such beneficial assignments. For instance, if a variable assumes the same value
across all optimal solutions, fixing it would preserve optimality and likely simplify the subsequent
problem. In practice, however, enumerating all MPE solutions is infeasible [13], and exhaustively
evaluating the impact of every variable-value pair on solver performance is prohibitively expensive.
Consequently, existing methods rely on handcrafted heuristics [14, 15] or structure-based metrics
[16] that often lack generalization.

In this work, we introduce learning to condition (L2C), a data-driven approach to rank variable-value
assignments based on their utility for conditioning. The goal is to train a neural network to identify
assignments that strike a balance between two objectives: preserving access to optimal solutions and
simplifying the inference process. To achieve this, we train an attention-based neural network that
assigns two scores to each variable-value assignment: an optimality score, estimating the likelihood
of the assignment’s presence in an optimal solution, and a simplification score, measuring the extent
to which fixing the assignment reduces solver effort.

We obtain supervision for these scores via a scalable data generation pipeline. For each training
instance, we solve the MPE query once using an oracle and treat the resulting solution as a proxy
for the set of optimal solutions. Variable-value pairs present in the solution are labeled as positive
examples for the optimality head. To supervise the simplification head, we fix individual variables to
their optimal values, re-solve the query, and record solver statistics such as runtime and the number
of explored nodes, providing a quantitative measure of the reduction in inference complexity.

A key insight of our method is that solution ambiguity modulates conditioning risk. If a variable takes
the same value across all optimal solutions, fixing it is highly effective but also risky if the estimate
is incorrect, as it could eliminate the true MPE solution. Conversely, when a variable’s values are
more evenly distributed, conditioning poses less risk. Even if the model slightly misestimates the
correct value, the solution space is more tolerant, and optimality may still be preserved. Our model
implicitly learns to navigate this trade-off by generating soft scores that reflect both expected utility
and uncertainty, shaped through diverse training examples.

At inference time, the model assigns scores to all variable-value pairs in the query set for the given
instance and conditions on those with the highest scores. This strategy incrementally simplifies the
problem while avoiding premature elimination of the optimal solution. Additionally, the learned
model can also be integrated into branch-and-bound solvers as node and variable selection heuristics.

Contributions. This paper introduces a neural network-based conditioning strategy for MPE infer-
ence in PGMs, with the following key contributions:

• We formalize learning to condition (L2C) as a scoring problem over variable-value pairs that jointly
optimizes for solution preservation and inference tractability.

• We design a data-efficient supervision strategy that generates labels using oracle solutions and
solver statistics, avoiding the need for exhaustive MPE enumeration.

• We introduce an attention-based architecture that generalizes across instances and yields informative
optimality and simplification scores.

• We demonstrate that our method improves both inference efficiency and solution quality over
classical heuristics across a range of benchmark PGMs.

Our results show that L2C enables scalable, learned conditioning decisions that adapt to instance
structure, outperforming traditional heuristics in both speed and accuracy. Our implementation, solver
integrations, and experiment scripts are publicly available at, https://github.com/brijml/L2C.

2

https://github.com/brijml/L2C

2 Background

We assume, w.l.o.g., that all random variables are binary and take values in {0, 1}. Individual variables
are denoted by uppercase letters (e.g., X), and their assignments by corresponding lowercase letters
(e.g., x). Sets of variables are denoted by bold uppercase letters (e.g., X), and assignments to those
sets are written in bold lowercase (e.g., x). Given a full assignment x to a set X, and a subset Y ⊆ X,
we use xY to denote the projection of x onto Y.

A probabilistic graphical model (PGM) M = 〈X,F, G〉 is defined over a set of variables X, a
collection of log-potentials F = {f1, . . . , fm}, and an undirected primal graph G = (V, E). Each
log-potential fi ∈ F is defined over a subset S(fi) ⊆ X, known as its scope. The vertex set V
contains one node for each variable in X, and an edge (Va,Vb) ∈ E is added whenever Xa and Xb

co-occur in the scope of some fi. The model defines the following joint probability distribution:

PM(x) ∝ exp

∑
f∈F

f(xS(f))


We focus on the most probable explanation (MPE) task: given observed evidence variables E ⊂ X
with assignment e, find the most likely assignment for query variables Q = X \E. Formally, this is:

MPE(Q, e) = argmax
q

PM(q | e) = argmax
q

∑
f∈F

f((q, e)S(f))

This problem is NP-hard in general and remains intractable for numerous model families [17–21].

Exact MPE algorithms include bucket elimination [22], which uses variable elimination via local
reparameterization, and Mixed Integer Programming (MIP) encodings solved with branch-and-bound
solvers like SCIP [23] that combine LP relaxations with systematic search. Such solvers are often
anytime, providing progressively better solutions and bounds, with optimality certificates upon con-
vergence. Nevertheless, for many real-world PGMs—particularly those with high treewidth—exact
inference remains computationally infeasible.

Conditioning is a classical strategy for simplifying inference by fixing a subset of variables. For
MPE, assigning values qd to a conditioning set Qd ⊆ Q reduces the problem to solving MPE for
the remaining variables Q0 = Q \Qd given evidence e ∪ qd. The resulting residual solution q∗

0
and qd form the complete MPE solution. Conditioning is fundamental to exact methods like cutset
conditioning [4], recursive conditioning [5], and search algorithms such as Branch and Bound (B&B)
and AND/OR Branch and Bound (AOBB) [24]. Conditioning also informs heuristic methods such as
decimation strategies inspired by statistical physics [9, 10, 25, 26].

Branch and Bound (B&B) performs a depth-first or best-first search over a decision tree, recursively
partitioning the assignment space and pruning subproblems using lower bounds from LP relaxations
or mini-bucket elimination [27]; its efficiency hinges on branching heuristics and bound quality.
AND/OR Branch and Bound (AOBB) [24] improves upon B&B by exploiting graphical model
structure through a pseudo tree and an AND/OR search graph. This graph uses OR nodes for variable
choices and AND nodes for decomposition points, enabling independent search on conditionally
independent components formed by assignments. AOBB further avoids redundant computations by
merging nodes with identical separator contexts. Consequently, AOBB can prune substantial portions
of the search space, often achieving exponential savings over standard B&B.

Graph-based methods like Mini-Bucket Elimination [27] generate bounds (e.g., upper bounds for
MPE) that accelerate B&B and AOBB through earlier pruning. Variable and value ordering heuristics
further enhance their effectiveness [28–30].

Recent efforts integrate learning into solver decisions. In MIP, full strong branching [7, 6] uses
one-step look-ahead for selecting branch variables that maximize bound improvement; neural net-
works trained via imitation learning can replicate this [31, 32]. Other machine learning approaches
include using SVMs to identify optimal decision variables [33] and NNs for effective node-selection
strategies [34]. Recent neural approaches to MPE inference have concentrated on optimizing relaxed
likelihood objectives [35–37]. While these methods eliminate the need for supervision, they provide
no guarantees of optimality, as they rely on continuous relaxations of the MPE objective.

3

Our work advances conditioning-based simplification by learning a scoring function that ranks
variable-value assignments according to their utility in reducing inference complexity while preserving
optimality.

3 Learning to Condition (L2C)

We propose a neural approach for ranking variable-value assignments based on their utility in
simplifying MPE inference while preserving optimality. This task, which we call Learning to
Condition (L2C), balances two goals: minimizing inference cost and avoiding exclusion of optimal
solutions. Our model learns two scores per assignment: one measuring consistency with optimal
solutions and another estimating simplification benefit. These data-driven scores guide the selection
of high-confidence assignments and can also be used to steer node selection in B&B solvers. Next,
we describe the L2C pipeline, including data generation, neural architecture, training objectives,
ranking mechanism, and integration with inference procedures.

3.1 Data collection

We construct a dataset of MPE queries and solver outcomes to train the L2C model to score variable-
value assignments based on two criteria: their consistency with optimal solutions and their ability to
simplify inference when fixed. Because enumerating all optimal solutions or exhaustively evaluating
all assignments is computationally infeasible, we collect targeted supervision using selective oracle
queries under randomized input conditions.

The full data collection procedure is described in Algorithm 1. Given a probabilistic graphical model
M = 〈X,F, G〉, we repeatedly sample full assignments x ∼ PM and randomly partition the variable
set into disjoint subsets: a query set Q ⊂ X of size qr · |X|, and an evidence set E = X \Q. The
evidence assignment e is formed by projecting x onto E, and an MPE solver is invoked to compute
the optimal solution q∗ = argmaxq PM(q | e). The resulting assignment, along with runtime and
number of nodes explored, is stored as supervision.

Algorithm 1: Data Collection for L2C
with Conditioning Assignments
Input: PGMM = 〈X,F, G〉, Query Ratio

qr, Max Conditions cmax, Budget B
Output: Dataset DB
Function SolveMPE(M, e, B):

Run MPE solver onM with evidence e
and time bound B

return rec = {assign, time,#nodes}
Initialize DB ← ∅
while not enough samples in DB do

Sample x ∼ PM
Q← random subset of X of size qr|X|
E← X \Q
e← xE

rec← SolveMPE(M, e)
Store (e, rec) in DB
C← random subset of Q of size cmax

for each C ∈ C do
for each value c ∈ {0, 1} do

e′ ← e ∪ {C = c}
rec′ ← SolveMPE(M, e′)
Store (e′, rec′) in DB

return DB

To evaluate the impact of variable-value assignments
on inference, we randomly sample a subset C ⊂ Q
of size at most cmax, and for each C ∈ C, consider
both binary assignments C = 0 and C = 1. For
each assignment, we augment the evidence to form
e′ = e ∪ {C = c}, solve the resulting MPE query,
and record solver statistics such as runtime, number
of nodes explored, and objective value. These evalu-
ations provide supervision for both the simplification
and optimality scoring heads.

Evaluating all possible variable-value assignments
for each instance is computationally prohibitive, es-
pecially for large models. To manage this cost, we
introduce a sampling parameter cmax that bounds the
number of variables considered for conditioning per
instance. This allows us to gather informative super-
vision while keeping the number of additional MPE
queries tractable. In practice, cmax can be chosen
based on the model size, the characteristics of the
solver, and the available compute budget.

When the solver fails to return a result within the
allocated time budget B, we log surrogate statistics
such as LP-bound improvements or relaxed objective
scores. Although these surrogates may be noisy, they
increase coverage across instances and improve the generalization ability.

Each e and its corresponding optimal assignment q∗ (if returned by the MPE solver) in DB serves as
supervision for the optimality head. For simplification, we convert the collected solver statistics into
a ranking distribution over a small set of candidate variables C ⊂ Q. For each candidate C ∈ C, we

4

D
en

se

Va
ria

bl
e

Em
be

dd
in

gs
 L

ay
er

Multi-head
Attention

Bl
oc

ks
 w

ith
 S

ki
p

C
on

ne
ct

io
ns

R
EL

U

D
en

se

R
EL

U D
en

se

R
EL

U

D
en

se

X 15

Optimality
Head

Simplification
Head

D
en

se

D
ro

po
ut

La
ye

r N
or

m

R
EL

U

Variable
Embeddings

Evidence
Embeddings

Figure 1: Attention-based architecture for scoring variable-value pairs by their utility in simplifying
MPE inference while preserving optimality.

define: pC ∝ 1
tC

where tC is a composite scalar derived from multiple solver statistics recorded for
the query conditioned on C = c, including runtime, number of search nodes explored, and objective
value. These quantities are combined linearly to reflect the overall simplification utility of the
assignment. The resulting distribution is normalized using a softmax over inverse scores, assigning
higher probabilities to variable-value assignments that are more effective at reducing inference cost.

Thus the resulting dataset contains both exact and surrogate supervision, allowing the model to learn
to balance optimality preservation with inference simplification across a range of graphical model
instances.

3.2 Neural network architecture

For a partially observed MPE instance (evidence E ⊂ X with assignment e, query variables
Q = X \E), our model (Figure 1) scores variable-value pairs on their potential for MPE optimality
preservation and inference cost reduction. Each pair (Xi = xi) is represented by an embedding
vector [38]. For binary variables, an embedding table of size 2×|X| provides distinct embeddings for
each variable’s possible values. An additional embedding indicates variable status (observed/evidence
or unobserved/query), enabling support for arbitrary evidence-query partitions.

For each unobserved variable Qi ∈ Q, its two value assignment embeddings query a multi-head
attention module [39] using evidence variable embeddings as keys and values, contextualizing each
candidate assignment relative to the instance and enabling the model to learn associations between
evidence and promising assignments. The output contextualized embeddings, concatenated with their
original counterparts, pass through a shared encoder (comprising fully connected layers with ReLU
activations, residual connections [40], and dropout [41]). This encoder produces a representation for
each variable-value pair, which is then passed to two separate prediction heads.

The optimality head, a two-layer MLP with a sigmoid output, estimates an assignment’s likelihood of
inclusion in the MPE solution. Trained with binary cross-entropy loss against oracle-derived labels,
this head learns a relaxed optimality proxy, capturing generalizable patterns across problem instances.

A separate simplification head, also a two-layer MLP, outputs unnormalized scores for candidate
assignments. These scores, after softmax normalization, are trained via a list-ranking cross-entropy
loss [42], using targets derived from solver statistics (Section 3.1) like runtime, search depth, or
relaxed objectives. By predicting relative utility instead of absolute complexity reduction, this head
produces scores that generalize well and exhibit noise robustness.

Our architecture exhibits permutation invariance to variable ordering and supports arbitrary evidence-
query partitions, promoting generalization. Cross-attention facilitates query-specific evidence condi-
tioning, while the dual-head design jointly optimizes solution quality and inference efficiency. This
yields a flexible scoring function adept at guiding conditioning during inference.

3.3 Loss functions

We train our model using a multi-task objective [43] that combines two losses: a binary classification
loss for predicting whether a variable-value pair is part of an optimal MPE solution, and a list-ranking
loss that encourages the model to prioritize assignments that simplify inference. These respectively
supervise the network’s optimality and simplification heads.

5

Optimality loss. For each query variable Qi ∈ Q and its possible values qi ∈ {0, 1}, the optimality
head predicts ŷ(q)i ∈ [0, 1], the probability that assignment Qi = q is in the oracle MPE solution,
where y

(q)
i ∈ {0, 1} is the true label. The binary cross-entropy loss is applied independently per pair:

Lopt = −
∑

Qi∈Q

∑
q∈{0,1}

(
y
(q)
i log ŷ

(q)
i + (1− y

(q)
i) log(1− ŷ

(q)
i)

)
This formulation supports supervision with multiple optimal assignments, enabling the model to learn
from all optimal solutions for a given instance.

Simplification ranking loss. For each instance, the training dataset contains solver statistics for
a subset of query variables C ⊂ Q, obtained during data collection as described in Section 3.1.
For each C ∈ C, we construct a target probability distribution pC that reflects the simplification
utility of fixing C = c, based on a combination of solver statistics such as runtime, number of nodes
explored, and objective value. The simplification head generates scores for all variable-value pairs in
Q, which are normalized via softmax into a predicted distribution p̂C . We then compute a list-ranking
cross-entropy loss [42]:

Lrank = −
∑
C∈C

pC log p̂C

This loss encourages the model to prioritize assignments that lead to greater reductions in inference
cost. Since supervision is available only for a subset of Q, we apply a binary mask to restrict the loss
computation to the subset C for which solver statistics were recorded during training. This ensures
that only observed variable-value pairs influence parameter updates, while predictions for the rest of
Q remain unconstrained.

Algorithm 2: Beam Search for L2C
Input: PGMM, Scoring function F , Initial

evidence E, Time limit tl, Max depth
Dmax, Beam width W

Output: Approximate MPE solution
Init. beam B ← {(0,E)} //(score,evid)
for d = 1 to Dmax do

Initialize candidate list C ← ∅
foreach (s,Epartial) ∈ B do

Identify query variables
Qrem = X \Epartial

foreach unfixed Qi ∈ Qrem do
foreach value qi ∈ {0, 1} do

Let
E′ ← Epartial ∪ {Qi = qi}

Let s′ ← F(E′)
Add (s′,E′) to C

Sort C in descending order by score s′

Prune C to retain top W elements
B ← C

Let (s∗,E∗)← TOPCANDIDATE(B)
Run q∗ ← SolveMPE(M,E∗, tl)
return q∗

Joint objective and masking. The total loss com-
bines these components as a weighted sum:

L = λopt · Lopt + λrank · Lrank

Here, λopt and λrank balance the objectives’ relative
importance. We train using both exact and surrogate
datasets. If supervision is available for only one head
(optimality or ranking), we apply its loss and mask
the other, preventing gradient updates from missing
targets. This joint objective allows the model to bal-
ance accuracy with inference efficiency by leveraging
both exact and approximate supervision.

3.4 Inference-time strategies

At inference time, the model guides variable-value
assignment decisions that simplify the MPE problem
before the solver is invoked. Given a probabilistic
graphical model M = (X,F), an initial evidence
set E ⊂ X, and assignment e, the model takes the
current evidence as input and produces scores for
each remaining query variable-value pair (Qi = qi),
where Qi ∈ V \E and qi ∈ {0, 1}.

The optimality head outputs confidence ŷ
(q)
i ∈ [0, 1] for an assignment’s MPE consistency; the

simplification head provides a score s
(q)
i ∈ R for its inference simplification utility. These scores are

combined to select conditioning assignments via two strategies:

Greedy conditioning. This strategy iteratively filters assignments by an optimality threshold τ ,
selects the one with the highest simplification score among confident candidates, and adds it to
evidence. This repeats for a fixed number of steps or until no confident options remain, before passing
the simplified MPE query to a solver.

6

G SB LO LR

BN 12
BN 13
BN 30
BN 32
BN 45
BN 49
BN 53
BN 59
BN 61
BN 65
BN 9

Prm 60
Prm 68
Grid 20

5 0 12 12
5 1 11 12
12 12 12
9 12 12
0 0 12 12
0 0 11 12
0 0 10 12
0 0 12 12
0 0 7 12
0 0 10 10
2 0 12 12
5 0 12 12
2 0 6 11
0 0 12 12

(a) Wins vs. oracle by time limit
for all methods (G: Graph, SB: Full
Strong Branching, LO: L2C-OPT,
LR: L2C-RANK).

5% 10% 15% 20%

BN 12
BN 13
BN 30
BN 32
BN 45
BN 49
BN 53
BN 59
BN 61
BN 65
BN 9

Prm 60
Prm 68
Grid 20

-2.0 -3.8 -4.9 -5.2
-1.0 -2.1 -3.1 -4.1
-11.6 -20.1 -25.3 -33.1
-63.7 -66.7 -69.2 -72.1
-2.0 -2.8 -3.3 -3.5
-6.6 -14.0 -15.7 -11.3
-2.6 -8.1 -12.0 -10.5
-3.2 -9.8 -13.9 -15.2
-2.8 -6.8 -13.2 -10.7
-0.9 -4.1 -6.2 -6.6
-0.4 -0.8 -1.5 -2.9
-0.1 -0.2 -0.3 -0.4
-0.1 -0.1 -0.2 -0.2
-0.2 -0.3 -0.4 -0.6

(b) L2C-RANK vs. oracle LL gap
by Dmax (cols) and graphical model
(rows).

Figure 2: Neural vs. baseline
methods for greedy conditioning
(SCIP oracle). (a) Win counts;
(b) Log-likelihood gaps. Color:
Darker green = stronger, darker
red = weaker performance. Grey:
Timeouts (30s).

Beam search. To explore multiple conditioning sequences,
beam search (Algorithm 2) maintains W partial assignment se-
quences. At each step d ≤ Dmax, sequences are expanded with
assignments scored as in greedy conditioning. The best final
sequence provides evidence E∗ for the MPE solver.

Final solution. Let E∗ denote the final evidence set selected by
either strategy. The residual MPE query is defined over Qresidual =
V \E∗. We call an MPE solver (exact or anytime) to compute:

q∗
residual = argmax

q
PM(q | e∗)

and return the complete solution q∗ = q∗
residual ∪ e∗.

This framework uses learned assignments to restructure the MPE
problem, reducing solver complexity while preserving correctness
and enabling time-bounded inference.

NN-Guided branch-and-bound search Our neural model also
enhances branch-and-bound (B&B) solvers. It guides branching
by selecting variables predicted to simplify the subproblem (using
scores akin to greedy conditioning) and uses optimality head
predictions to tighten lower bounds. These actions accelerate
B&B convergence while maintaining optimality guarantees.

Learning to Condition (L2C) transforms the traditionally static
variable selection problem into a learned, instance-specific de-
cision process. Compatible with both exact and approximate
solvers, L2C generalizes across problem instances and enables
principled trade-offs between solution quality and computational
cost. We next empirically evaluate its performance across a di-
verse set of benchmarks and graphical models.

4 Experiments

In this section, we evaluate our neural strategies, L2C-OPT (using
only the optimality head for scoring) and L2C-RANK (using the
scoring procedure from Section 3.4). We benchmark these strate-
gies for two tasks: (1) against standard conditioning heuristics,
and (2) as branching and node selection methods within B&B
solvers. We begin by describing our experimental framework,
including the PGMs, baseline methods, evaluation metrics, and
NN architecture.

4.1 Graphical models

We evaluated our method and baselines on 14 high-treewidth
binary probabilistic graphical models (PGMs) from UAI inference
competitions [44, 45], featuring 90 to 1444 variables and up to
1444 factors. Using Gibbs sampling [1], we generated 12,000
training, 1,000 test, and 1,000 validation examples per model.
All MPE instances used 75% of the PGM’s variables as query
variables. We construct the supervised dataset following the
procedure outlined in Section 3.1. During data generation, QR is
set to 0.75 and cmax is set to 10% of the total number of variables
in each PGM.

7

0 25 50 75 100 125 150
Avg % Gap

0

20

40

60

80

100

%
 N

od
e

Im
pr

ov
em

en
t

Depth = 5%

0 25 50 75 100 125 150 175
Avg % Gap

Depth = 10%

0 25 50 75 100 125 150 175
Avg % Gap

Depth = 15%

0 25 50 75 100 125 150 175
Avg % Gap

Depth = 25%

L2C-Opt L2C-Rank Graph Strong Branching

Figure 3: Greedy conditioning methods (AOBB oracle): Average solution gap (x-axis) versus % node
reduction (y-axis). Each subfigure denotes a fixed decision count.

4.2 Experimental setup and methods

The neural networks in L2C-OPT and L2C-RANK use 256-dimensional embeddings, two multi-head
attention layers, and 15 skip-connection blocks. Dense layers have 512 units with 0.1 dropout [41]
and ReLU activations. We trained the models using Adam [46] with a learning rate of 8 × 10−4,
an exponential decay rate of 0.97, a batch size of 128, and early stopping after 5 stagnant epochs
(maximum 50 epochs). All models were implemented in PyTorch [47] and executed on an NVIDIA
A40 GPU. Appendix B provides further hyper-parameter details.

Baseline methods: We compare our approach with two heuristic methods: The graph-based
heuristic [28–30] prioritizes variables by degree, selecting them in descending order after removing
evidence nodes. This max-degree strategy assigns each variable its most likely value, estimated via
Gibbs Sampling [1, 48] over the PGM. The full strong branching heuristic [7], a classical technique
for enhancing branch-and-bound efficiency, formulates the MPE query as an ILP [1]. It then scores
variable-value pairs by their impact on search space pruning.

Oracle: We use two oracles on unconditioned queries and as final solvers post-conditioning: the
SCIP solver [23], and the AND/OR Branch and Bound (AOBB) solver (per Otten and Dechter [24]
and implemented by Otten [3]). MPE queries are encoded as Integer Linear Programs (ILPs) [1] for
SCIP, which applies its branch-and-bound algorithm subject to a 60-second time limit per query.

Evaluation criteria: The competing approaches were evaluated based on two criteria: log-
likelihood scores and runtime. The log-likelihood scores, calculated as ln pM(e,q), assesses the
quality of the solution in terms of optimality. The runtime measures the efficiency of the conditioning
process by indicating how quickly each method solves the problem.

4.3 Empirical evaluations

4.3.1 Greedy conditioning

We evaluate our methods and baselines as scoring functions (F) in a greedy conditioning framework
(Section 3.4), selecting up to 25% of query variables.1 For each PGM, we test 12 configurations:
four conditioning depths (5%, 10%, 15%, 25% of query variables) combined with three oracle time
budgets (10s, 30s, 60s). Post-conditioning, SCIP attempts to solve the residual problem within the
allotted budget.

Figure 2a (heatmap) quantifies for each conditioning strategy the number of the 12 configurations
where it enabled the SCIP oracle to achieve a higher average log-likelihood (LL) score than solving
the original, non-conditioned query. The oracle’s time budget was identical for both conditioned and
non-conditioned queries.

The results (Figure 2a) show that both L2C-OPT (LO) and L2C-RANK (LR) consistently enhance
oracle performance over direct solving of the original query. L2C-RANK performs best, frequently

1To ensure a fair comparison, as the max-degree baseline supports only a beam size of 1, we use greedy
conditioning for neural and strong branching methods. Appendix E provides beam search results.

8

surpassing the non-conditioned oracle across all 12 configurations. Conversely, full strong branching
(SB) and the graph-based heuristic (G) only occasionally improve LL scores.

Figure 2b presents the average percentage LL gap: 1
N

∑N
i=1(LL

(i)
S −LL(i)

D)/(|LL(i)
S |)×100, where

LL(i)
S and LL(i)

D are the oracle’s log-likelihoods for instance i without and with conditioning by
L2C-RANK, respectively. Rows denote PGMs, and columns indicate conditioning depth (percentage
of query variables conditioned). The oracle’s time budget is fixed at 30s for both approaches.

Predominantly negative (green) values in Figure 2b indicate that L2C-RANK conditioning helps
the oracle find superior solutions within the 30s budget. The gap becomes increasingly negative
with more conditioning decisions (i.e., greater conditioning depth), demonstrating our method’s
scalability. This improvement occurs because conditioning simplifies the query by instantiating
additional variables, thus presenting an easier query to the oracle.

10 30 60

BN 12
BN 13
BN 30
BN 32
BN 45
BN 49
BN 53
BN 59
BN 61
BN 65
BN 9

Prm 60
Prm 68
Grid 20

-4.0 -3.0 -0.3
-1.9 -2.2 -0.1
0.0 -4.7 -0.0
0.0 22.1 1.6
0.3 -0.2 -3.6
0.0 -3.8 -8.0
0.0 -12.3 -10.3
0.0 -11.6 -13.1
0.2 -5.7 -6.9
-7.5 -9.1 -1.8
-1.4 -1.1 -0.6
0.0 -0.3 -0.3
0.1 -0.2 -0.0
-0.1 -0.8 -0.5

Figure 4: Heuristic compar-
ison across datasets (rows)
and time limits (columns);
darker green/red indicates bet-
ter/worse L2C-RANK perfor-
mance.

Assisting AOBB via conditioning: We also evaluated our neural
heuristic with the AND/OR Branch and Bound (AOBB) solver [3]
as an alternative oracle.

Figure 3 plots the percentage reduction in AOBB’s processed node
count (y-axis, proxy for effort reduction) against the average LL
gap from the exact MPE solution (x-axis).2 Points near the y-axis
indicate high solution quality with reduced effort; greater x-values
imply more quality degradation.

Our conditioning strategies, as shown in Figure 3, yield near-optimal
solutions while substantially reducing AOBB’s processed node count.
In contrast, traditional baselines exhibit larger solution gaps with
increased conditioning depth due to increasingly suboptimal deci-
sions. Our methods consistently maintain high solution quality (most
points near the y-axis) and more effectively accelerate AOBB by
shrinking the search space, particularly with deeper conditioning.

Consequently, L2C enables efficient resolution of queries that are
otherwise challenging for the oracle, especially for large-treewidth
models, frequently yielding substantially better solutions under iden-
tical time constraints.

4.3.2 NN-Guided branch-and-bound search

We also employ our neural network outputs to guide branch-and-
bound search, using them as branching rules [32] and node selection
heuristics [34], following the methodology detailed in Section 3.4.

Figure 4 compares our neural-guided heuristics against SCIPs default strategies [23, 49–51], showing
the average LL gap (defined previously) over three time limits and all datasets. The predominantly
green cells, particularly dark green ones, in the heatmap signify that our neural heuristics often
outperform SCIP’s defaults. Furthermore, the few red cells underscore that our approach generally
matches or surpasses SCIP’s default heuristic performance and delivers better solutions within
identical time budgets.

4.3.3 Comparing conditioning methods by per-decision time

Table 1 reports the average time required to make a single conditioning decision across all networks.
Both L2C-OPT and L2C-RANK maintain consistent decision times across different network sizes,
demonstrating the scalability and practical feasibility of our learned heuristics. In contrast, the
graph-based heuristic exhibits increasing latency as network size grows, while strong branching is
considerably slower and often infeasible for large models. We imposed a 30-second timeout per
decision, under which strong branching failed to return results for the largest networks (BN 30 and

2Node and LL gap reductions for AOBB are relative to its unconditioned execution. AOBB’s internal
preprocessing and heuristics often enable it to solve MPE queries within the time limit; thus, a reduced node
count with a near-zero LL gap signifies simplified inference without quality loss.

9

Table 1: Mean ± standard deviation of decision time (s) across networks for each branching strategy.
Gray cells indicate cases where the 30 s timeout was reached.

Network L2C-OPT L2C-RANK Graph Strong Branching

BN 12 0.001 ± 0.000 0.002 ± 0.001 0.001 ± 0.001 2.215 ± 0.161
BN 9 0.003 ± 0.002 0.006 ± 0.004 0.007 ± 0.003 1.256 ± 0.115
BN 13 0.001 ± 0.001 0.002 ± 0.001 0.022 ± 0.020 2.787 ± 0.114
Grid 20 0.006 ± 0.004 0.011 ± 0.004 0.107 ± 0.062 7.325 ± 0.117
BN 65 0.005 ± 0.005 0.008 ± 0.005 0.086 ± 0.053 5.871 ± 0.320
BN 59 0.005 ± 0.004 0.009 ± 0.005 0.097 ± 0.057 10.993 ± 1.683
BN 49 0.007 ± 0.005 0.011 ± 0.004 0.100 ± 0.059 19.713 ± 3.417
BN 53 0.005 ± 0.004 0.009 ± 0.005 0.095 ± 0.056 9.106 ± 0.993
BN 61 0.009 ± 0.004 0.013 ± 0.004 0.103 ± 0.063 20.896 ± 3.038
BN 45 0.011 ± 0.005 0.014 ± 0.003 0.088 ± 0.050 8.675 ± 0.733
Prm 68 0.013 ± 0.004 0.016 ± 0.003 0.085 ± 0.051 4.279 ± 0.118
Prm 60 0.015 ± 0.002 0.015 ± 0.002 0.089 ± 0.052 5.432 ± 0.270
BN 30 0.018 ± 0.002 0.018 ± 0.002 0.098 ± 0.058 —
BN 32 0.023 ± 0.005 0.025 ± 0.009 0.102 ± 0.060 —

BN 32). Overall, these results show that L2C achieves low and predictable decision costs even as
model complexity increases.

Summary: Our comprehensive experiments validate the consistent superiority of L2C. We evaluate
our approach using two competitive and complementary solver backends: AOBB, a top-performing
AND/OR search solver, and SCIP, a state-of-the-art ILP optimizer. This combination encompasses
structurally distinct inference paradigms, highlighting the solver-agnostic advantages of learned
conditioning. As a conditioning strategy, it empowers SCIP to achieve better solutions within time
limits, especially for intractable problems, and allows AOBB to preserve solution quality while
drastically reducing search effort (node exploration). Furthermore, employing our neural scores
as branching and node selection heuristics enhances SCIP’s solution quality under the same time
constraints. Importantly, L2C maintains stable decision times across increasing network sizes,
underscoring its scalability and suitability for large-scale inference. Collectively, these results affirm
our method’s effectiveness both as a conditioning strategy, improving solution quality and efficiency
and as an effective heuristic guiding branch-and-bound solvers.

5 Conclusion

We introduced Learning to Condition (L2C), a neural approach leveraging solver search traces to
accelerate Most Probable Explanation (MPE) inference in Probabilistic Graphical Models (PGMs).
L2C learns to identify variable assignments that effectively balance inference simplification with
optimality preservation, superseding handcrafted heuristics. It serves either as a pre-processor
simplifying problems for exact solvers or as an internal policy guiding branching and variable
selection within search algorithms. Evaluations on high-treewidth models show L2C substantially
curtails the search space, achieving solution quality comparable or superior to baselines and thus
providing a more efficient path to MPE solutions.

Limitations and future work: The current limitations lie in scalability, solver signal diversity,
and generalization to unseen model structures. The method is tailored to a fixed PGM and depends
on solver-derived supervision, which is costly to obtain at scale. Extending L2C to other solver
families, such as MAXSAT, local search, or soft arc-consistency solvers, would necessitate substantial
modifications to the architecture, data collection pipeline, and learning objectives.

Future work will focus on scaling L2C to handle larger models with millions of variables and
factors, while employing more efficient and bootstrapped data collection techniques to reduce oracle
dependence. We will also integrate richer solver signals (e.g., branch-and-cut statistics) to enhance
pruning and design neural bounding mechanisms that extend learned guidance beyond conditioning.
Finally, learned variable orderings will be explored for novel neural bounding strategies, extending
guidance beyond conditioning to further boost inference performance.

10

Acknowledgments and Disclosure of Funding

This work was supported in part by the DARPA CODORD program under contract number
HR00112590089, the DARPA Assured Neuro Symbolic Learning and Reasoning (ANSR) Pro-
gram under contract number HR001122S0039, the National Science Foundation grant IIS-1652835,
and the AFOSR award FA9550-23-1-0239.

References
[1] D. Koller and N. Friedman. Probabilistic Graphical Models: Principles and Techniques.

Adaptive computation and machine learning. MIT Press, 2009. ISBN 9780262013192.

[2] Radu Marinescu and Rina Dechter. And/or branch-and-bound for graphical models. In Pro-
ceedings of the 19th International Joint Conference on Artificial Intelligence, IJCAI’05, page
224229, San Francisco, CA, USA, 2005. Morgan Kaufmann Publishers Inc.

[3] Lars Otten. Daoopt: Sequential and distributed and/or branch and bound for mpe problems,
2012. URL https://github.com/lotten/daoopt.

[4] Judea Pearl and Rina Dechter. Identifying independence in bayesian networks. Networks, 20
(5):507–534, 1990. doi: 10.1002/net.3230200506.

[5] Adnan Darwiche. Recursive conditioning. Artificial Intelligence, 126(1):5–41, 2001. ISSN
0004-3702. doi: 10.1016/S0004-3702(00)00069-2.

[6] Santanu S. Dey, Yatharth Dubey, Marco Molinaro, and Prachi Shah. A theoretical and
computational analysis of full strong-branching. Math. Program., 205(12):303336, 2023.
ISSN 0025-5610. doi: 10.1007/s10107-023-01977-x. URL https://doi.org/10.1007/
s10107-023-01977-x.

[7] D. Applegate, R. Bixby, V. Chvatal, and B. Cook. Finding cuts in the tsp (a preliminary report).
Technical report, 1995.

[8] M Mézard, G Parisi, and R Zecchina. Analytic and algorithmic solution of random satisfiability
problems. Science, 297(5582):812–815, 2002.

[9] A. Braunstein, M. Mézard, and R. Zecchina. Survey propagation: An algorithm for satisfiability.
Random Struct. Algorithms, 27(2):201226, 2005. ISSN 1042-9832.

[10] Lukas Kroc, Ashish Sabharwal, and Bart Selman. Message-passing and local heuristics as
decimation strategies for satisfiability. In Proceedings of the 2009 ACM symposium on Applied
Computing, pages 1408–1414, Honolulu Hawaii, 2009. ACM. ISBN 978-1-60558-166-8. doi:
10.1145/1529282.1529596. URL https://dl.acm.org/doi/10.1145/1529282.1529596.
TLDR: The results reveal that once the authors resolve convergence issues, BP itself can solve
fairly hard random k-SAT formulas through decimation; the gap between BP and SP narrows
down quickly as k increases, and the hardness of the decimated formulas is explored.

[11] Keki Burjorjee. Explaining adaptation in genetic algorithms with uniform crossover: The
hyperclimbing hypothesis. In Proceedings of the 14th annual conference companion on Genetic
and evolutionary computation, pages 1461–1462, Philadelphia Pennsylvania USA, 2012. ACM.
ISBN 978-1-4503-1178-6. doi: 10.1145/2330784.2330991. URL https://dl.acm.org/
doi/10.1145/2330784.2330991.

[12] Lukas Kroc. Probabilistic techniques for constraint satisfaction problems. PhD thesis, USA,
2009. AAI3376595.

[13] Radu Marinescu and Rina Dechter. Counting the optimal solutions in graphical mod-
els. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-
Buc, Emily B. Fox, and Roman Garnett, editors, Advances in Neural Information
Processing Systems 32: Annual Conference on Neural Information Processing Sys-
tems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pages
12091–12101, 2019. URL https://proceedings.neurips.cc/paper/2019/hash/
fc2e6a440b94f64831840137698021e1-Abstract.html.

11

https://github.com/lotten/daoopt
https://doi.org/10.1007/s10107-023-01977-x
https://doi.org/10.1007/s10107-023-01977-x
https://dl.acm.org/doi/10.1145/1529282.1529596
https://dl.acm.org/doi/10.1145/2330784.2330991
https://dl.acm.org/doi/10.1145/2330784.2330991
https://proceedings.neurips.cc/paper/2019/hash/fc2e6a440b94f64831840137698021e1-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/fc2e6a440b94f64831840137698021e1-Abstract.html

[14] David Poole and Nevin Lianwen Zhang. Exploiting contextual independence in probabilistic
inference. J. Artif. Int. Res., 18(1):263313, 2003. ISSN 1076-9757.

[15] A Fridman. Mixed markov models. Proceedings of the National Academy of Sciences, 100(14):
8092–8096, 2003.

[16] Uffe Kjærulff. Triangulation of graph — algorithms giving small total state space. Technical
Report R90-09, Aalborg University, Denmark, 1990.

[17] Gregory F. Cooper. The computational complexity of probabilistic inference using bayesian
belief networks. Artificial Intelligence, 42(2-3):393–405, 1990. ISSN 00043702. doi: 10.1016/
0004-3702(90)90060-D.

[18] James D. Park and Adnan Darwiche. Complexity results and approximation strategies for map
explanations. J. Artif. Int. Res., 21(1):101133, 2004. ISSN 1076-9757.

[19] Cassio P. de Campos. New complexity results for MAP in bayesian networks. In Toby
Walsh, editor, IJCAI 2011, Proceedings of the 22nd International Joint Conference on Artificial
Intelligence, Barcelona, Catalonia, Spain, July 16-22, 2011, pages 2100–2106. IJCAI/AAAI,
2011. doi: 10.5591/978-1-57735-516-8/IJCAI11-351. URL https://doi.org/10.5591/
978-1-57735-516-8/IJCAI11-351.

[20] Diarmaid Conaty, Cassio P. de Campos, and Denis Deratani Mauá. Approximation complexity
of maximum A posteriori inference in sum-product networks. In Gal Elidan, Kristian Kersting,
and Alexander T. Ihler, editors, Proceedings of the Thirty-Third Conference on Uncertainty in
Artificial Intelligence, UAI 2017, Sydney, Australia, August 11-15, 2017. AUAI Press, 2017.
URL http://auai.org/uai2017/proceedings/papers/109.pdf.

[21] Robert Peharz. Foundations of Sum-Product Networks for Probabilistic Modeling. PhD thesis,
Medical University of Graz, 2015.

[22] Rina Dechter. Bucket elimination: A unifying framework for reasoning. Artificial Intelligence,
113(1–2):41–85, 1999. doi: 10.1016/S0004-3702(99)00061-X.

[23] Suresh Bolusani, Mathieu Besançon, Ksenia Bestuzheva, Antonia Chmiela, João Dionísio, Tim
Donkiewicz, Jasper van Doornmalen, Leon Eifler, Mohammed Ghannam, Ambros Gleixner,
Christoph Graczyk, Katrin Halbig, Ivo Hedtke, Alexander Hoen, Christopher Hojny, Rolf
van der Hulst, Dominik Kamp, Thorsten Koch, Kevin Kofler, Jurgen Lentz, Julian Manns, Gioni
Mexi, Erik Mühmer, Marc E. Pfetsch, Franziska Schlösser, Felipe Serrano, Yuji Shinano, Mark
Turner, Stefan Vigerske, Dieter Weninger, and Lixing Xu. The SCIP Optimization Suite 9.0.
Technical report, Optimization Online, 2024. URL https://optimization-online.org/
2024/02/the-scip-optimization-suite-9-0/.

[24] Lars Otten and Rina Dechter. A case study in complexity estimation: Towards paral-
lel branch-and-bound over graphical models. In Nando de Freitas and Kevin P. Mur-
phy, editors, Proceedings of the Twenty-Eighth Conference on Uncertainty in Artificial In-
telligence, Catalina Island, CA, USA, August 14-18, 2012, pages 665–674. AUAI Press,
2012. URL https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=
2&article_id=2327&proceeding_id=28.

[25] Andrea Montanari, Federico Ricci-Tersenghi, and Guilhem Semerjian. Solving constraint satis-
faction problems through belief propagation-guided decimation. ArXiv preprint, abs/0709.1667,
2007. URL https://arxiv.org/abs/0709.1667.

[26] Shaowei Cai, Chuan Luo, and Haochen Zhang. From decimation to local search and back: A
new approach to maxsat. In Carles Sierra, editor, Proceedings of the Twenty-Sixth International
Joint Conference on Artificial Intelligence, IJCAI 2017, Melbourne, Australia, August 19-25,
2017, pages 571–577. ijcai.org, 2017. doi: 10.24963/ijcai.2017/80. URL https://doi.org/
10.24963/ijcai.2017/80.

[27] Rina Dechter. Mini-buckets: a general scheme for generating approximations in automated rea-
soning. In Proceedings of the Fifteenth International Joint Conference on Artifical Intelligence
- Volume 2, IJCAI’97, page 12971302, San Francisco, CA, USA, 1997. Morgan Kaufmann
Publishers Inc. ISBN 15558604804.

12

https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-351
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-351
http://auai.org/uai2017/proceedings/papers/109.pdf
https://optimization-online.org/2024/02/the-scip-optimization-suite-9-0/
https://optimization-online.org/2024/02/the-scip-optimization-suite-9-0/
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=2327&proceeding_id=28
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=2327&proceeding_id=28
https://arxiv.org/abs/0709.1667
https://doi.org/10.24963/ijcai.2017/80
https://doi.org/10.24963/ijcai.2017/80

[28] Sajjad Siddiqi and Jinbo Huang. Variable and value ordering for mpe search. In Proceedings of
the 23rd Conference on Uncertainty in Artificial Intelligence (UAI), Arlington, Virginia, USA,
2008. AUAI Press.

[29] Radu Marinescu and Rina Dechter. Dynamic orderings for AND/OR branch-and-bound search
in graphical models. In Proceedings of the 18th European Conference on Artificial Intelligence
(ECAI), 2006.

[30] Radu Marinescu, Kalev Kask, and Rina Dechter. Systematic versus nonsystematic search algo-
rithms for most probable explanations. In Proceedings of the 19th Conference on Uncertainty
in Artificial Intelligence (UAI), 2003.

[31] Elias Boutros Khalil, Pierre Le Bodic, Le Song, George L. Nemhauser, and Bistra Dilkina.
Learning to branch in mixed integer programming. In Dale Schuurmans and Michael P.
Wellman, editors, Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence,
February 12-17, 2016, Phoenix, Arizona, USA, pages 724–731. AAAI Press, 2016. URL
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12514.

[32] Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. Exact
combinatorial optimization with graph convolutional neural networks. In Hanna M. Wallach,
Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett,
editors, Advances in Neural Information Processing Systems 32: Annual Conference on Neural
Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC,
Canada, pages 15554–15566, 2019. URL https://proceedings.neurips.cc/paper/
2019/hash/d14c2267d848abeb81fd590f371d39bd-Abstract.html.

[33] Yuan Sun, Xiaodong Li, and Andreas Ernst. Using statistical measures and machine learning for
graph reduction to solve maximum weight clique problems. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 43(5):1746–1760, 2021. doi: 10.1109/TPAMI.2019.2954827.

[34] Yunzhuang Shen, Yuan Sun, Andrew Eberhard, and Xiaodong Li. Learning primal heuristics for
mixed integer programs. In 2021 International Joint Conference on Neural Networks (IJCNN),
pages 1–8, 2021. doi: 10.1109/IJCNN52387.2021.9533651.

[35] Shivvrat Arya, Tahrima Rahman, and Vibhav Gogate. Neural network approximators for
marginal map in probabilistic circuits. In Proceedings of the Thirty-Eighth AAAI Conference
on Artificial Intelligence, AAAI’24. AAAI Press, 2024. ISBN 978-1-57735-887-9. doi:
10.1609/aaai.v38i10.28966. URL https://doi.org/10.1609/aaai.v38i10.28966.

[36] Shivvrat Arya, Tahrima Rahman, and Vibhav Gogate. A neural network approach for effi-
ciently answering most probable explanation queries in probabilistic models. In A. Globerson,
L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang, editors, Advances in
Neural Information Processing Systems, volume 37, pages 33538–33601. Curran Associates,
Inc., 2024.

[37] Shivvrat Arya, Tahrima Rahman, and Vibhav Giridhar Gogate. SINE: Scalable MPE inference
for probabilistic graphical models using advanced neural embeddings. In The 28th International
Conference on Artificial Intelligence and Statistics, 2025.

[38] Tomas Mikolov, Kai Chen, Gregory S. Corrado, and Jeffrey Dean. Efficient estimation of word
representations in vector space. In International Conference on Learning Representations, 2013.

[39] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Isabelle Guyon, Ulrike von
Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman
Garnett, editors, Advances in Neural Information Processing Systems 30: Annual Conference
on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA,
pages 5998–6008, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/
3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.

[40] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2016, Las Vegas, NV, USA, June 27-30, 2016, pages 770–778. IEEE Computer Society, 2016.
doi: 10.1109/CVPR.2016.90. URL https://doi.org/10.1109/CVPR.2016.90.

13

http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12514
https://proceedings.neurips.cc/paper/2019/hash/d14c2267d848abeb81fd590f371d39bd-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/d14c2267d848abeb81fd590f371d39bd-Abstract.html
https://doi.org/10.1609/aaai.v38i10.28966
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.1109/CVPR.2016.90

[41] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: A Simple Way to Prevent Neural Networks from Overfitting. Journal of Machine
Learning Research, 15(56):1929–1958, 2014. ISSN 1533-7928.

[42] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. Learning to rank: from
pairwise approach to listwise approach. In Proceedings of the 24th International Conference
on Machine Learning, ICML ’07, page 129136, New York, NY, USA, 2007. Association
for Computing Machinery. ISBN 9781595937933. doi: 10.1145/1273496.1273513. URL
https://doi.org/10.1145/1273496.1273513.

[43] Rich Caruana. Multitask learning. Machine Learning, 28(1):41–75, 1997. doi: 10.1023/A:
1007379606734.

[44] G. Elidan and A. Globerson. The 2010 UAI Approximate Inference Challenge. 2010.

[45] Rina Dechter, Alexander Ihler, Vibhav Gogate, Junkyu Lee, Bobak Pezeshki, Annie Raichev,
and Nick Cohen. UAI 2022 competition, 2022. URL https://uaicompetition.github.
io/uci-2022/.

[46] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua
Bengio and Yann LeCun, editors, 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL
http://arxiv.org/abs/1412.6980.

[47] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Köpf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style,
high-performance deep learning library. In Hanna M. Wallach, Hugo Larochelle, Alina
Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett, editors, Advances
in Neural Information Processing Systems 32: Annual Conference on Neural Information
Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada,
pages 8024–8035, 2019. URL https://proceedings.neurips.cc/paper/2019/hash/
bdbca288fee7f92f2bfa9f7012727740-Abstract.html.

[48] Kalev Kask and Rina Dechter. Stochastic local search for bayesian network. In David Hecker-
man and Joe Whittaker, editors, Proceedings of the Seventh International Workshop on Artificial
Intelligence and Statistics, volume R2 of Proceedings of Machine Learning Research. PMLR,
03–06 Jan 1999. URL https://proceedings.mlr.press/r2/kask99a.html. Reissued
by PMLR on 20 August 2020.

[49] Tobias Achterberg, Timo Berthold, and Gregor Hendel. Rounding and Propagation Heuris-
tics for Mixed Integer Programming, page 7176. Springer Berlin Heidelberg, 2012. ISBN
9783642292101. doi: 10.1007/978-3-642-29210-1_12. URL http://dx.doi.org/10.
1007/978-3-642-29210-1_12.

[50] Tobias Achterberg and Timo Berthold. Hybrid branching. In Proceedings of the 6th Inter-
national Conference on Integration of AI and OR Techniques in Constraint Programming
for Combinatorial Optimization Problems, CPAIOR ’09, page 309311, Berlin, Heidelberg,
2009. Springer-Verlag. ISBN 9783642019289. doi: 10.1007/978-3-642-01929-6_23. URL
https://doi.org/10.1007/978-3-642-01929-6_23.

[51] Chris Wallace. Zi round, a mip rounding heuristic. Journal of Heuristics, 16(5):715722, 2009.
ISSN 1572-9397. doi: 10.1007/s10732-009-9114-6. URL http://dx.doi.org/10.1007/
s10732-009-9114-6.

14

https://doi.org/10.1145/1273496.1273513
https://uaicompetition.github.io/uci-2022/
https://uaicompetition.github.io/uci-2022/
http://arxiv.org/abs/1412.6980
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.mlr.press/r2/kask99a.html
http://dx.doi.org/10.1007/978-3-642-29210-1_12
http://dx.doi.org/10.1007/978-3-642-29210-1_12
https://doi.org/10.1007/978-3-642-01929-6_23
http://dx.doi.org/10.1007/s10732-009-9114-6
http://dx.doi.org/10.1007/s10732-009-9114-6

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: [NA]

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: [NA]

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

15

Justification: [NA]
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

16

Answer: [Yes]
Justification: We will release the code as part of our supplementary materials. Furthermore,
the UAI benchmark models used in the paper for experiments are available online.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/

public/guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not

be possible, so No is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide most of the details in the main paper and additional details in the
supplementary materials
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

17

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: [NA]
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: Our paper improves the speed, accuracy and scalability of Branch & Bound
and other exact solver for MPE inference. Since algorithms already exist for solving MPE
tasks, we do not perceive any negative or positive societal impacts beyond what currently
exists.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

18

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

19

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

20

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

21

https://neurips.cc/Conferences/2025/LLM

A Description of the probabilistic graphical models

Table 2 summarizes the networks used in our experiments, listing the number of variables and factors
in each. The experiments were conducted on high-treewidth probabilistic graphical models (PGMs)
of varying sizes, with the number of variables ranging from 90 to 1440 and factor counts covering a
similar range. The table also lists the network aliases used throughout the paper for ease of reference.

Table 2: Summary of networks used in our experiments, including the number of variables and factors
for each.

Network Name Network Alias Number of Factors Number of Variables
BN_12 BN 12 90 90
BN_9 BN 9 105 105

BN_13 BN 13 125 125
grid20x20.f5.wrap Grid 20 1200 400

BN_65 BN 65 440 440
BN_59 BN 59 540 540
BN_53 BN 53 561 561
BN_49 BN 49 661 661
BN_61 BN 61 667 667
BN_45 BN 45 880 880

Promedas_68 Prm 68 1022 1022
Promedas_60 Prm 60 1076 1076

BN_30 BN 30 1156 1156
BN_32 BN 32 1440 1440

B Hyperparameter details

We used a consistent set of hyperparameters across all networks in our experiments. From the initial
dataset of 14,000 samples, we allocated 13,000 for training and 1,000 for testing. The training set
was further split into 12,000 samples for training and 1,000 for validation.

The neural networks in L2C-OPT and L2C-RANK use 256-dimensional embeddings, two multi-head
attention layers, and 15 skip-connection blocks. Dense layers have 512 units with 0.1 dropout [41]
and ReLU activations. We trained the models using Adam [46] with a learning rate of 8 × 10−4,
an exponential decay rate of 0.97, a batch size of 128, and early stopping after 5 stagnant epochs
(maximum 50 epochs). All models were implemented in PyTorch [47] and executed on an NVIDIA
A40 GPU. After training, we evaluated the model on 1,000 MPE queries with a query ratio of 0.75,
defined as the fraction of variables in the query set.

Hyperparameters were selected via 5-fold cross-validation. In particular, the weighting parameters
λopt and λrank were critical for balancing the preservation of optimal solutions with inference
efficiency. We searched over λopt ∈ {0.3, 0.35, 0.4, 0.45, 0.5} and set λrank = 1− λopt.

C Extending L2C to multi-valued and continuous domains

While the main formulation of Learning to Condition (L2C) focuses on binary variables for simplicity,
the framework generalizes naturally to multi-valued discrete and continuous domains with minor
architectural and procedural modifications.

C.1 Multi-valued discrete variables

For multi-valued variables, we define a variable-value pair for each possible assignment. During
data collection, the same procedure is used to gather solver traces, now over the expanded set of
candidate pairs. The attention-based scoring architecture remains unchangedeach (variable, value)
pair is embedded independently and scored through the same optimality and simplification heads.
This formulation allows L2C to reason jointly over variablevalue combinations without requiring
major adjustments to training or inference. At inference time, greedy or beam-based selection can be

22

performed over all pairs, and conditioning proceeds as in the binary case. The learned heuristic thus
generalizes directly to categorical domains.

C.2 Continuous variables

Directly applying L2C to continuous domains is infeasible because the set of possible values is
uncountable. To adapt, we discretize each continuous variable into a finite set of representative values
(e.g., via uniform or quantile-based binning). The data collection process then conditions on these
discretized values and records solver statistics as in the discrete case. During training, embeddings
are created for each (variable, discretized value) pair, and the existing attention-based network and
loss objectives are applied without modification. To mitigate discretization artifacts, soft-label targets
or local smoothing can be used to ensure smooth transitions across adjacent bins.

At inference time, the model selects promising (variable, value) pairs based on the learned scores.
After conditioning on discretized values, local continuous optimization methods (e.g., gradient
descent, coordinate search) can optionally refine assignments within selected regions, improving
precision beyond discretization resolution. This hybrid strategy allows L2C to extend its learned
conditioning capabilities to continuous-variable inference while maintaining compatibility with
existing solver frameworks.

D Greedy conditioning performance using SCIP as oracle

In this section, we analyze the conditioning performance of all methods under varying oracle time
budgets and numbers of greedy conditioning decisions when SCIP solver [23] is used as the oracle.
For each method and network, we report the average percentage gap in log-likelihood. The y-axis in
Figures 5 to 18 shows the average percentage gap in log-likelihood scores, computed as:

avg. % gap =
1

N

N∑
i=1

(LL(i)
S − LL(i)

D)

|LL(i)
S |

× 100 (1)

where LL(i)
S denotes the log-likelihood score of the oracle before conditioning, and LL(i)

D denotes
the score after conditioning for instance i. Thus, negative values indicate that conditioning improves
solution quality, while positive values indicate a decline in performance. The x-axis represents the
number of conditioning decisions, and each subfigure corresponds to a distinct oracle time budget.

As shown in the figures, our neural network-based strategies, L2C-OPT and L2C-RANK, consistently
improve the oracle performance after conditioning, as evidenced by negative percentage gaps. In
contrast, the graph-based heuristic and the full strong branching heuristic lead to improvements
in only a small fraction of instances. Since these baselines do not produce optimal decisions, their
performance generally worsens with increasing oracle time budgets, resulting in larger positive
average gaps. This degradation becomes more pronounced as the number of conditioning decisions
increases. In comparison, our approaches yield increasingly negative average gaps with more
decisions, indicating consistent performance gains.

23

5% 10% 15% 25%
Decisions Taken

10

5

0

5

10

15

20

Av
er

ag
e

%
 G

ap

Timelimit = 10 sec

5% 10% 15% 25%
Decisions Taken

Timelimit = 30 sec

5% 10% 15% 25%
Decisions Taken

Timelimit = 60 sec

L2C-Opt L2C-Rank Graph Strong Branching

Figure 5: Average percentage gap on the BN 12 network for greedy conditioning using our methods,
L2C-OPT and L2C-RANK, and baseline approaches across varying time budgets and numbers of
decisions. More negative values indicate better performance.

5% 10% 15% 25%
Decisions Taken

0

5

10

15

20

Av
er

ag
e

%
 G

ap

Timelimit = 10 sec

5% 10% 15% 25%
Decisions Taken

Timelimit = 30 sec

5% 10% 15% 25%
Decisions Taken

Timelimit = 60 sec

L2C-Opt L2C-Rank Graph Strong Branching

Figure 6: Average percentage gap on the BN 9 network for greedy conditioning using our methods,
L2C-OPT and L2C-RANK, and baseline approaches across varying time budgets and numbers of
decisions. More negative values indicate better performance.

24

5% 10% 15% 25%
Decisions Taken

4

2

0

2

4

6

8

10

Av
er

ag
e

%
 G

ap

Timelimit = 10 sec

5% 10% 15% 25%
Decisions Taken

Timelimit = 30 sec

5% 10% 15% 25%
Decisions Taken

Timelimit = 60 sec

L2C-Opt L2C-Rank Graph Strong Branching

Figure 7: Average percentage gap on the BN 13 network for greedy conditioning using our methods,
L2C-OPT and L2C-RANK, and baseline approaches across varying time budgets and numbers of
decisions. More negative values indicate better performance.

5% 10% 15% 25%
Decisions Taken

0

10

20

30

40

Av
er

ag
e

%
 G

ap

Timelimit = 10 sec

5% 10% 15% 25%
Decisions Taken

Timelimit = 30 sec

5% 10% 15% 25%
Decisions Taken

Timelimit = 60 sec

L2C-Opt L2C-Rank Graph Strong Branching

Figure 8: Average percentage gap on the Grid 20 network for greedy conditioning using our methods,
L2C-OPT and L2C-RANK, and baseline approaches across varying time budgets and numbers of
decisions. More negative values indicate better performance.

25

5% 10% 15% 25%
Decisions Taken

10

0

10

20

30

40

50

60

Av
er

ag
e

%
 G

ap

Timelimit = 10 sec

5% 10% 15% 25%
Decisions Taken

Timelimit = 30 sec

5% 10% 15% 25%
Decisions Taken

Timelimit = 60 sec

L2C-Opt L2C-Rank Graph Strong Branching

Figure 9: Average percentage gap on the BN 65 network for greedy conditioning using our methods,
L2C-OPT and L2C-RANK, and baseline approaches across varying time budgets and numbers of
decisions. More negative values indicate better performance.

5% 10% 15% 25%
Decisions Taken

20

0

20

40

60

Av
er

ag
e

%
 G

ap

Timelimit = 10 sec

5% 10% 15% 25%
Decisions Taken

Timelimit = 30 sec

5% 10% 15% 25%
Decisions Taken

Timelimit = 60 sec

L2C-Opt L2C-Rank Graph Strong Branching

Figure 10: Average percentage gap on the BN 59 network for greedy conditioning using our methods,
L2C-OPT and L2C-RANK, and baseline approaches across varying time budgets and numbers of
decisions. More negative values indicate better performance.

26

5% 10% 15% 25%
Decisions Taken

10

0

10

20

30

40

50

Av
er

ag
e

%
 G

ap

Timelimit = 10 sec

5% 10% 15% 25%
Decisions Taken

Timelimit = 30 sec

5% 10% 15% 25%
Decisions Taken

Timelimit = 60 sec

L2C-Opt L2C-Rank Graph Strong Branching

Figure 11: Average percentage gap on the BN 53 network for greedy conditioning using our methods,
L2C-OPT and L2C-RANK, and baseline approaches across varying time budgets and numbers of
decisions. More negative values indicate better performance.

5% 10% 15% 25%
Decisions Taken

20

0

20

40

60

80

100

Av
er

ag
e

%
 G

ap

Timelimit = 10 sec

5% 10% 15% 25%
Decisions Taken

Timelimit = 30 sec

5% 10% 15% 25%
Decisions Taken

Timelimit = 60 sec

L2C-Opt L2C-Rank Graph Strong Branching

Figure 12: Average percentage gap on the BN 49 network for greedy conditioning using our methods,
L2C-OPT and L2C-RANK, and baseline approaches across varying time budgets and numbers of
decisions. More negative values indicate better performance.

27

5% 10% 15% 25%
Decisions Taken

20

0

20

40

60

80

100

120

Av
er

ag
e

%
 G

ap

Timelimit = 10 sec

5% 10% 15% 25%
Decisions Taken

Timelimit = 30 sec

5% 10% 15% 25%
Decisions Taken

Timelimit = 60 sec

L2C-Opt L2C-Rank Graph Strong Branching

Figure 13: Average percentage gap on the BN 61 network for greedy conditioning using our methods,
L2C-OPT and L2C-RANK, and baseline approaches across varying time budgets and numbers of
decisions. More negative values indicate better performance.

5% 10% 15% 25%
Decisions Taken

0

10

20

30

40

50

60

70

80

Av
er

ag
e

%
 G

ap

Timelimit = 10 sec

5% 10% 15% 25%
Decisions Taken

Timelimit = 30 sec

5% 10% 15% 25%
Decisions Taken

Timelimit = 60 sec

L2C-Opt L2C-Rank Graph Strong Branching

Figure 14: Average percentage gap on the BN 45 network for greedy conditioning using our methods,
L2C-OPT and L2C-RANK, and baseline approaches across varying time budgets and numbers of
decisions. More negative values indicate better performance.

28

5% 10% 15% 25%
Decisions Taken

0

2

4

6

8

10

12

14

16

Av
er

ag
e

%
 G

ap

Timelimit = 10 sec

5% 10% 15% 25%
Decisions Taken

Timelimit = 30 sec

5% 10% 15% 25%
Decisions Taken

Timelimit = 60 sec

L2C-Opt L2C-Rank Graph Strong Branching

Figure 15: Average percentage gap on the Promedas 68 network for greedy conditioning using our
methods, L2C-OPT and L2C-RANK, and baseline approaches across varying time budgets and
numbers of decisions. More negative values indicate better performance.

5% 10% 15% 25%
Decisions Taken

0

5

10

15

20

Av
er

ag
e

%
 G

ap

Timelimit = 10 sec

5% 10% 15% 25%
Decisions Taken

Timelimit = 30 sec

5% 10% 15% 25%
Decisions Taken

Timelimit = 60 sec

L2C-Opt L2C-Rank Graph Strong Branching

Figure 16: Average percentage gap on the Promedas 60 network for greedy conditioning using our
methods, L2C-OPT and L2C-RANK, and baseline approaches across varying time budgets and
numbers of decisions. More negative values indicate better performance.

29

5% 10% 15% 25%
Decisions Taken

80

70

60

50

40

30

20

10

0

Av
er

ag
e

%
 G

ap

Timelimit = 10 sec

5% 10% 15% 25%
Decisions Taken

Timelimit = 30 sec

5% 10% 15% 25%
Decisions Taken

Timelimit = 60 sec

L2C-Opt L2C-Rank Graph

Figure 17: Average percentage gap on the BN 30 network for greedy conditioning using our methods,
L2C-OPT and L2C-RANK, and baseline approaches across varying time budgets and numbers of
decisions. More negative values indicate better performance.

5% 10% 15% 25%
Decisions Taken

80

60

40

20

0

Av
er

ag
e

%
 G

ap

Timelimit = 10 sec

5% 10% 15% 25%
Decisions Taken

Timelimit = 30 sec

5% 10% 15% 25%
Decisions Taken

Timelimit = 60 sec

L2C-Opt L2C-Rank Graph

Figure 18: Average percentage gap on the BN 32 network for greedy conditioning using our methods,
L2C-OPT and L2C-RANK, and baseline approaches across varying time budgets and numbers of
decisions. More negative values indicate better performance.

30

E Conditioning performance for beam search-based conditioning

E.1 Using SCIP as oracle

We now present detailed results comparing the performance of various conditioning strategies
when used in beam search, using the SCIP solver as the oracle. Each bar represents the average
log-likelihood gap (computed using equation 1) before and after conditioning, aggregated over
conditioning depths of 5%, 10%, 15%, and 25% of the query variables, and averaged across all MPE
queries solved using the oracle. Each subfigure corresponds to a specific oracle time budget.

Our neural strategies, L2C-OPT and L2C-RANK, consistently outperform the full strong branching
heuristic in improving oracle performance, as evidenced by the negative average percentage gap. As
the beam width increases, the performance of our methods either improves or remains consistent. In
contrast, the strong branching heuristic often fails to return a decision within the 30-second time limit
on larger networks and wider beams. As a result, the corresponding bars are omitted in the plots.

We omit results for the graph-based heuristic, as it only supports a beam width of 1 and is therefore
not applicable in this setting.

1 3 5
Beam Width

5.0

2.5

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Av
er

ag
e

%
 G

ap

Timelimit = 10 sec

1 3 5
Beam Width

Timelimit = 30 sec

1 3 5
Beam Width

Timelimit = 60 sec

L2C-Opt L2C-Rank Strong Branching

Figure 19: Average percentage gap on the BN 12 network comparing our methods to baseline
approaches across varying time budgets and beam widths using beam-search based conditioning.
More negative values indicate better performance.

31

1 3 5
Beam Width

2

0

2

4

6

8

10

12

Av
er

ag
e

%
 G

ap
Timelimit = 10 sec

1 3 5
Beam Width

Timelimit = 30 sec

1 3 5
Beam Width

Timelimit = 60 sec

L2C-Opt L2C-Rank Strong Branching

Figure 20: Average percentage gap on the BN 9 network comparing our methods to baseline
approaches across varying time budgets and beam widths using beam-search based conditioning.
More negative values indicate better performance.

1 3 5
Beam Width

2

0

2

4

6

8

10

Av
er

ag
e

%
 G

ap

Timelimit = 10 sec

1 3 5
Beam Width

Timelimit = 30 sec

1 3 5
Beam Width

Timelimit = 60 sec

L2C-Opt L2C-Rank Strong Branching

Figure 21: Average percentage gap on the BN 13 network comparing our methods to baseline
approaches across varying time budgets and beam widths using beam-search based conditioning.
More negative values indicate better performance.

32

1 3 5
Beam Width

0

5

10

15

20

Av
er

ag
e

%
 G

ap
Timelimit = 10 sec

1 3 5
Beam Width

Timelimit = 30 sec

1 3 5
Beam Width

Timelimit = 60 sec

L2C-Opt L2C-Rank Strong Branching

Figure 22: Average percentage gap on the Grid 20 network comparing our methods to baseline
approaches across varying time budgets and beam widths using beam-search based conditioning.
More negative values indicate better performance. Missing bars for strong branching indicate
timeouts.

1 3 5
Beam Width

0

20

40

60

80

100

Av
er

ag
e

%
 G

ap

Timelimit = 10 sec

1 3 5
Beam Width

Timelimit = 30 sec

1 3 5
Beam Width

Timelimit = 60 sec

L2C-Opt L2C-Rank Strong Branching

Figure 23: Average percentage gap on the BN 65 network comparing our methods to baseline
approaches across varying time budgets and beam widths using beam-search based conditioning.
More negative values indicate better performance. Missing bars for strong branching indicate
timeouts.

33

1 3 5
Beam Width

0

20

40

60

Av
er

ag
e

%
 G

ap
Timelimit = 10 sec

1 3 5
Beam Width

Timelimit = 30 sec

1 3 5
Beam Width

Timelimit = 60 sec

L2C-Opt L2C-Rank Strong Branching

Figure 24: Average percentage gap on the BN 59 network comparing our methods to baseline
approaches across varying time budgets and beam widths using beam-search based conditioning.
More negative values indicate better performance. Missing bars for strong branching indicate
timeouts.

1 3 5
Beam Width

10

0

10

20

30

40

Av
er

ag
e

%
 G

ap

Timelimit = 10 sec

1 3 5
Beam Width

Timelimit = 30 sec

1 3 5
Beam Width

Timelimit = 60 sec

L2C-Opt L2C-Rank Strong Branching

Figure 25: Average percentage gap on the BN 53 network comparing our methods to baseline
approaches across varying time budgets and beam widths using beam-search based conditioning.
More negative values indicate better performance. Missing bars for strong branching indicate
timeouts.

34

1 3 5
Beam Width

0

20

40

60

80

100
Av

er
ag

e
%

 G
ap

Timelimit = 10 sec

1 3 5
Beam Width

Timelimit = 30 sec

1 3 5
Beam Width

Timelimit = 60 sec

L2C-Opt L2C-Rank Strong Branching

Figure 26: Average percentage gap on the BN 49 network comparing our methods to baseline
approaches across varying time budgets and beam widths using beam-search based conditioning.
More negative values indicate better performance. Missing bars for strong branching indicate
timeouts.

1 3 5
Beam Width

0

20

40

60

80

100

Av
er

ag
e

%
 G

ap

Timelimit = 10 sec

1 3 5
Beam Width

Timelimit = 30 sec

1 3 5
Beam Width

Timelimit = 60 sec

L2C-Opt L2C-Rank Strong Branching

Figure 27: Average percentage gap on the BN 61 network comparing our methods to baseline
approaches across varying time budgets and beam widths using beam-search based conditioning.
More negative values indicate better performance. Missing bars for strong branching indicate
timeouts.

35

1 3 5
Beam Width

0

10

20

30

40

Av
er

ag
e

%
 G

ap
Timelimit = 10 sec

1 3 5
Beam Width

Timelimit = 30 sec

1 3 5
Beam Width

Timelimit = 60 sec

L2C-Opt L2C-Rank Strong Branching

Figure 28: Average percentage gap on the BN 45 network comparing our methods to baseline
approaches across varying time budgets and beam widths using beam-search based conditioning.
More negative values indicate better performance. Missing bars for strong branching indicate
timeouts.

1 3 5
Beam Width

0

2

4

6

8

10

12

14

Av
er

ag
e

%
 G

ap

Timelimit = 10 sec

1 3 5
Beam Width

Timelimit = 30 sec

1 3 5
Beam Width

Timelimit = 60 sec

L2C-Opt L2C-Rank Strong Branching

Figure 29: Average percentage gap on the Promedas 68 network comparing our methods to baseline
approaches across varying time budgets and beam widths using beam-search based conditioning.
More negative values indicate better performance. Missing bars for strong branching indicate
timeouts.

36

1 3 5
Beam Width

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Av
er

ag
e

%
 G

ap
Timelimit = 10 sec

1 3 5
Beam Width

Timelimit = 30 sec

1 3 5
Beam Width

Timelimit = 60 sec

L2C-Opt L2C-Rank Strong Branching

Figure 30: Average percentage gap on the Promedas 60 network comparing our methods to baseline
approaches across varying time budgets and beam widths using beam-search based conditioning.
More negative values indicate better performance. Missing bars for strong branching indicate
timeouts.

1 3 5
Beam Width

50

40

30

20

10

0

Av
er

ag
e

%
 G

ap

Timelimit = 10 sec

1 3 5
Beam Width

Timelimit = 30 sec

1 3 5
Beam Width

Timelimit = 60 sec

L2C-Opt L2C-Rank

Figure 31: Average percentage gap on the BN 30 network comparing our methods to baseline
approaches across varying time budgets and beam widths using beam-search based conditioning.
More negative values indicate better performance. Missing bars for strong branching indicate
timeouts.

37

1 3 5
Beam Width

70

60

50

40

30

20

10

0

Av
er

ag
e

%
 G

ap

Timelimit = 10 sec

1 3 5
Beam Width

Timelimit = 30 sec

1 3 5
Beam Width

Timelimit = 60 sec

L2C-Opt L2C-Rank

Figure 32: Average percentage gap on the BN 32 network comparing our methods to baseline
approaches across varying time budgets and beam widths using beam-search based conditioning.
More negative values indicate better performance. Missing bars for strong branching indicate
timeouts.

38

E.2 Using AOBB as oracle

In this section, we evaluate the performance of beam search-based conditioning with AOBB (per
Otten and Dechter [24] and implemented by Otten [3]) as the oracle, using beam widths of 3 and 5,
as shown in Figures 33 and 34, respectively. Each figure plots the average solution gap against the
percentage reduction in the number of search nodes across 1,000 MPE queries over all networks,
with each point representing one network. The solution gap is computed using Equation 1, while
node reduction is calculated using the same formula with log-likelihood scores replaced by node
counts before and after conditioning.

Our methods, L2C-OPT and L2C-RANK, consistently yield lower solution gapsindicating better
preservation of optimal solutionsand higher node reductions, reflecting improved search efficiency. In
contrast, the full strong branching heuristic frequently fails to preserve solution quality, as indicated
by its larger gaps, and produces fewer data points due to timeouts exceeding the 30-second limit per
decision.

As before, we omit results for the graph-based heuristic, as it supports only a beam width of 1 and
is therefore not applicable in this setting.

2 2 6 10 14 18 22 26
Avg % Gap

0

20

40

60

80

%
 N

od
e

Im
pr

ov
em

en
t

Depth = 5%

2 2 6 10 14 18 22 26
Avg % Gap

Depth = 10%

2 2 6 10 14 18 22 26
Avg % Gap

Depth = 15%

2 2 6 10 14 18 22 26
Avg % Gap

Depth = 25%

L2C-Opt L2C-Rank Strong Branching

Figure 33: Beam search-based conditioning with AOBB as the oracle using a beam width of 3. Each
subfigure corresponds to a fixed number of conditioning decisions. The x-axis indicates the average
solution gap (lower is better), and the y-axis indicates the percentage reduction in node count (higher
is better). Each point represents a single network.

2 2 6 10 14 18 22 26
Avg % Gap

0

20

40

60

80

%
 N

od
e

Im
pr

ov
em

en
t

Depth = 5%

2 2 6 10 14 18 22 26
Avg % Gap

Depth = 10%

2 2 6 10 14 18 22 26
Avg % Gap

Depth = 15%

2 2 6 10 14 18 22 26
Avg % Gap

Depth = 25%

L2C-Opt L2C-Rank Strong Branching

Figure 34: Beam search-based conditioning with AOBB as the oracle using a beam width of 5. Each
subfigure corresponds to a fixed number of conditioning decisions. The x-axis indicates the average
solution gap (lower is better), and the y-axis indicates the percentage reduction in node count (higher
is better). Each point represents a single network.

F Incorporating L2C scores as branching and node selection heuristics in
branch-and-bound

In this section, we compare our trained neural networksused as branching rules [32] and node
selection heuristics [34] within the SCIP frameworkwith SCIPs default heuristics [23, 49, 50]. We
evaluate performance based on the average percentage gap in log-likelihood (LL) scores between our
methods, L2C-OPT and L2C-RANK, and SCIPs default strategies on the same set of MPE queries.
The gap is computed as:

39

1

N

N∑
i=1

LL(i)
S − LL(i)

N

|LL(i)
S |

× 100 (2)

where LL(i)
S denotes the log-likelihood score achieved by SCIP’s default heuristics, and LL(i)

N
denotes the score obtained using our L2C methods on the i-th instance. Negative values indicate
that our methods perform better; positive values indicate superior performance by SCIPs default
heuristics.

As shown in Figures 35 to 48, the percentage gap is typically negative, demonstrating that our
methods consistently yield higher log-likelihood scores than SCIP within the same time budget.
This indicates that for time-constrained settings, L2C-OPT and L2C-RANK can find higher-quality
solutions more efficiently than SCIPs default branching and node selection strategies. Overall, our
learned heuristics not only produce better decisions but also execute faster than the state-of-the-art
methods implemented in SCIP.

10 30 60
Time Budget in seconds

4

3

2

1

0

Av
er

ag
e

%
 G

ap

L2C-Opt L2C-Rank

Figure 35: Comparison of SCIPs default heuristics with our neural strategies, L2C-OPT and L2C-
RANK, for branching and node selection within the SCIP framework on the BN 12 network in terms
of average % gap in log-likelihood. More negative values indicate better performance.

40

10 30 60
Time Budget in seconds

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0
Av

er
ag

e
%

 G
ap

L2C-Opt L2C-Rank

Figure 36: Comparison of SCIPs default heuristics with our neural strategies, L2C-OPT and L2C-
RANK, for branching and node selection within the SCIP framework on the BN 9 network in terms
of average % gap in log-likelihood. More negative values indicate better performance.

10 30 60
Time Budget in seconds

2.5

2.0

1.5

1.0

0.5

0.0

Av
er

ag
e

%
 G

ap

L2C-Opt L2C-Rank

Figure 37: Comparison of SCIPs default heuristics with our neural strategies, L2C-OPT and L2C-
RANK, for branching and node selection within the SCIP framework on the BN 13 network in terms
of average % gap in log-likelihood. More negative values indicate better performance.

41

10 30 60
Time Budget in seconds

1.0

0.8

0.6

0.4

0.2

0.0

Av
er

ag
e

%
 G

ap
L2C-Opt L2C-Rank

Figure 38: Comparison of SCIPs default heuristics with our neural strategies, L2C-OPT and L2C-
RANK, for branching and node selection within the SCIP framework on the Grid 20 network in terms
of average % gap in log-likelihood. More negative values indicate better performance.

10 30 60
Time Budget in seconds

10

8

6

4

2

0

Av
er

ag
e

%
 G

ap

L2C-Opt L2C-Rank

Figure 39: Comparison of SCIPs default heuristics with our neural strategies, L2C-OPT and L2C-
RANK, for branching and node selection within the SCIP framework on the BN 65 network in terms
of average % gap in log-likelihood. More negative values indicate better performance.

42

10 30 60
Time Budget in seconds

14

12

10

8

6

4

2

0
Av

er
ag

e
%

 G
ap

L2C-Opt L2C-Rank

Figure 40: Comparison of SCIPs default heuristics with our neural strategies, L2C-OPT and L2C-
RANK, for branching and node selection within the SCIP framework on the BN 59 network in terms
of average % gap in log-likelihood. More negative values indicate better performance.

10 30 60
Time Budget in seconds

14

12

10

8

6

4

2

0

Av
er

ag
e

%
 G

ap

L2C-Opt L2C-Rank

Figure 41: Comparison of SCIPs default heuristics with our neural strategies, L2C-OPT and L2C-
RANK, for branching and node selection within the SCIP framework on the BN 53 network in terms
of average % gap in log-likelihood. More negative values indicate better performance.

43

10 30 60
Time Budget in seconds

10

8

6

4

2

0

Av
er

ag
e

%
 G

ap
L2C-Opt L2C-Rank

Figure 42: Comparison of SCIPs default heuristics with our neural strategies, L2C-OPT and L2C-
RANK, for branching and node selection within the SCIP framework on the BN 49 network in terms
of average % gap in log-likelihood. More negative values indicate better performance.

10 30 60
Time Budget in seconds

8

6

4

2

0

Av
er

ag
e

%
 G

ap

L2C-Opt L2C-Rank

Figure 43: Comparison of SCIPs default heuristics with our neural strategies, L2C-OPT and L2C-
RANK, for branching and node selection within the SCIP framework on the BN 61 network in terms
of average % gap in log-likelihood. More negative values indicate better performance.

44

10 30 60
Time Budget in seconds

4

3

2

1

0

Av
er

ag
e

%
 G

ap
L2C-Opt L2C-Rank

Figure 44: Comparison of SCIPs default heuristics with our neural strategies, L2C-OPT and L2C-
RANK, for branching and node selection within the SCIP framework on the BN 45 network in terms
of average % gap in log-likelihood. More negative values indicate better performance.

10 30 60
Time Budget in seconds

0.20

0.15

0.10

0.05

0.00

0.05

0.10

Av
er

ag
e

%
 G

ap

L2C-Opt L2C-Rank

Figure 45: Comparison of SCIPs default heuristics with our neural strategies, L2C-OPT and L2C-
RANK, for branching and node selection within the SCIP framework on the Promedas 68 network in
terms of average % gap in log-likelihood. More negative values indicate better performance.

45

10 30 60
Time Budget in seconds

0.6

0.5

0.4

0.3

0.2

0.1

0.0

0.1

0.2
Av

er
ag

e
%

 G
ap

L2C-Opt L2C-Rank

Figure 46: Comparison of SCIPs default heuristics with our neural strategies, L2C-OPT and L2C-
RANK, for branching and node selection within the SCIP framework on the Promedas 60 network in
terms of average % gap in log-likelihood. More negative values indicate better performance.

10 30 60
Time Budget in seconds

6

5

4

3

2

1

0

Av
er

ag
e

%
 G

ap

L2C-Opt L2C-Rank

Figure 47: Comparison of SCIPs default heuristics with our neural strategies, L2C-OPT and L2C-
RANK, for branching and node selection within the SCIP framework on the BN 30 network in terms
of average % gap in log-likelihood. More negative values indicate better performance.

46

10 30 60
Time Budget in seconds

0

5

10

15

20

25

30

Av
er

ag
e

%
 G

ap

L2C-Opt L2C-Rank

Figure 48: Comparison of SCIPs default heuristics with our neural strategies, L2C-OPT and L2C-
RANK, for branching and node selection within the SCIP framework on the BN 32 network in terms
of average % gap in log-likelihood. More negative values indicate better performance.

47

	Introduction
	Background
	Learning to Condition (L2C)
	Data collection
	Neural network architecture
	Loss functions
	Inference-time strategies

	Experiments
	Graphical models
	Experimental setup and methods
	Empirical evaluations
	Greedy conditioning
	NN-Guided branch-and-bound search
	Comparing conditioning methods by per-decision time

	Conclusion
	Description of the probabilistic graphical models
	Hyperparameter details
	Extending L2C to multi-valued and continuous domains
	Multi-valued discrete variables
	Continuous variables

	Greedy conditioning performance using SCIP as oracle
	Conditioning performance for beam search-based conditioning
	Using SCIP as oracle
	Using AOBB as oracle

	Incorporating L2C scores as branching and node selection heuristics in branch-and-bound

