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Abstract

Influence Maximization aims to select a subset of elements in a
social network to maximize information spread under a diffusion
model. While existing work primarily focuses on selecting influ-
ential nodes, these approaches assume unrestricted message prop-
agation—an assumption that fails in closed social networks, where
content visibility is constrained and node-level activations may be
infeasible. Motivated by the growing adoption of privacy-focused
platforms such as Signal, Discord, Instagram, and Slack, our work
addresses the following fundamental question: How can we learn ef-
fective edge activation strategies for influence maximization in closed
networks? To answer this question we introduce Reinforcement
Learning for Link Activation (RELINK), the first DRL framework
for edge-level influence maximization in privacy-constrained net-
works. It models edge selection as a Markov Decision Process, where
the agent learns to activate edges under budget constraints. Un-
like prior node-based DRL methods, RELINK uses an edge-centric
Q-learning approach that accounts for structural constraints and
constrained information propagation. Our framework combines
a rich node embedding pipeline with an edge-aware aggregation
module. The agent is trained using an n-step Double DQN objec-
tive, guided by dense reward signals that capture marginal gains in
influence spread. Extensive experiments on real-world networks
show that RELINK consistently outperforms existing edge-based
methods, achieving up to 15% higher influence spread and improved
scalability across diverse settings.

CCS Concepts

« Human-centered computing — Social network analysis;
« Information systems — Social networks; « Networks —
Online social networks.

Keywords

Influence Maximization, Closed Networks, Edge Selection, Deep
Reinforcement Learning, Social Network Analysis

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 Interna-
tional License.

CIKM °25, Seoul, Republic of Korea

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2040-6/2025/11

https://doi.org/10.1145/3746252.3761006

65

Smita Ghosh
sghosh3@scu.edu
Santa Clara University
Santa Clara, United States

Venkatesh Srinivasan
vsrinivasan4@scu.edu
Santa Clara University

Santa Clara, United States

ACM Reference Format:

Shivvrat Arya, Smita Ghosh, Bryan Maruyama, and Venkatesh Srinivasan.
2025. RELINK: Edge Activation for Closed Network Influence Maximization
via Deep Reinforcement Learning. In Proceedings of the 34th ACM Interna-
tional Conference on Information and Knowledge Management (CIKM ’25),
November 10-14, 2025, Seoul, Republic of Korea. ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/3746252.3761006

1 Introduction

The widespread adoption of digital social platforms has made infor-
mation diffusion a central challenge in network science, marketing,
and policy-making. Influence Maximization (IM)—the task of select-
ing a subset of network elements to maximize information spread
under a diffusion model—has been extensively studied over the past
two decades. Classical approaches [49] focus on identifying a small
set of influential nodes (seeds) to initiate diffusion. However, these
strategies often rest on strong assumptions—most notably, that con-
tent shared by a user is visible to all their neighbors—overlooking
scenarios where senders can selectively restrict post visibility. Such
assumptions fail to capture the increasingly constrained and inten-
tional nature of real-world information sharing.

This trend is exemplified by the rise of private and semi-private
platforms, often referred to as closed social networks. Applications
such as Signal, GroupMe, and Discord enable users to create invita-
tion-only groups for targeted conversations [3, 29, 42]. Instagram’s
Close Friends and private stories features allow selective shar-
ing [15], while platforms such as Slack and Nextdoor support
controlled communication within trusted circles [69, 72, 86, 87].
In response, major platforms—Meta, Microsoft (LinkedIn), and X
(formerly Twitter)—have introduced privacy-centric features such
as private groups, audience controls, and restricted visibility op-
tions [30, 64]. These developments show a broad shift toward more
intentional and privacy-preserving modes of online interaction.

This paradigm shift necessitates a reassessment of classical IM
strategies. Huang et al. [46] addressed this need by introducing
and formalizing Influence Maximization in Closed Social Networks
(IM-CSN), which recasts influence maximization under propagation
constraints as an edge activation problem. Formally, IM-CSN seeks
to select a budget-limited subset of edges whose activation maxi-
mizes the expected influence spread from a given seed set. This for-
mulation accurately captures the dynamics of closed social networks,
where the set of active nodes remains fixed and information flow is
governed by user- or platform-level access constraints—factors not
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Figure 1: Influence Maximization in Closed Social Networks (IM-CSN): Edge selection for k = 2. Red: seed nodes and candidate
edges; green: activated nodes and edges; dashed: pruned edges due to budget limits.

accounted for in traditional influence maximization frameworks
designed for open networks [49]. Consequently, classical node-
selection strategies are ill-suited for IM-CSN.

ExaMPLE 1. Figure 1 presents a toy example of edge selection in
a closed network. Each node may recommend up to k = 2 neighbors
to propagate information, and the seed set is S = {a}. Let C denote
candidate edges and & C V the active nodes below their out-degree
limit. Att = 0, C = E(a) (red arrows, panel 1) and ¥ = {a}, where
E(a) is a’s outgoing edges. While C # @, the algorithm selects the
highest-priority edge e = (u,v) € C, activates it (green), and updates
F «— F U {v}, adding E(v) to C. Panels 2-3 show iterations: activat-
ing (a, h) adds (h, i), (h, j); later, selecting (a, d) removes remaining
outgoing edges of a ((a,b), (a,c)) from C due to the out-degree con-
straint. Panel 4 shows the final set of activated edges.

Huang et al. [46] established that IM-CSN is NP-Hard, underscor-
ing its intrinsic computational difficulty due to the combinatorial
explosion in the space of possible edge insertions. Furthermore,
their work showed that greedy strategies based on marginal influ-
ence gain are ineffective: the objective function is non-submodular,
and computing marginal gains under the classical Independent
Cascade (IC) model [49] is computationally prohibitive. To address
these challenges, they introduced PSNA—the first algorithm specifi-
cally designed for IM-CSN —which augments the diffusion network
using submodularity-preserving lower bounds on influence spread.
While this surrogate objective enables tractable optimization, it
introduces limitations: PSNA optimizes over approximations rather
than true influence values, which can lead to suboptimal solutions.
Moreover, computing these bounds is costly, especially in large
networks, causing substantial runtime overhead.

To overcome these issues, we propose Reinforcement Learning
for Link Activation (RELINK), the first deep reinforcement learning
(DRL) framework designed for edge-level influence maximization
in closed social networks. Our approach leverages DRL to enable
sequential, influence-aware edge activation—an essential capability
for scalable decision-making in closed-network settings. While ex-
act marginal gains are costly at test time [46], our method computes
them during training, leveraging greater resources for richer learn-
ing signals. This allows the model to approximate true marginal
gains, enabling more effective edge selection without computing
them at inference time.
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We formulate RELINK as a Markov Decision Process (MDP),
where states correspond to partial cascades and actions to edge
activations. The agent is trained using deep Q-learning with an
n-step Double DQN objective, allowing end-to-end optimization
under budget and propagation constraints. Inspired by the success
of DRL in node-level influence maximization—where methods such
as PIANO [59] and DREIM [62] have outperformed state-of-the-art
approximation algorithms—our framework brings these advantages
to the edge-level setting. The agent receives dense rewards based on
exact marginal influence gains and employs an ¢-greedy exploration
policy, enabling it to learn effective strategies in the presence of
non-submodular, long-range influence dynamics.

Our contributions are summarized as follows:

o To the best of our knowledge, we introduce the first end-to-
end DRL-based solution for IM-CSN, addressing the unique
challenges posed by edge-level activations under closed net-
work constraints.

e We design a node embedding and aggregation pipeline that
captures topological and influence-relevant features, and
integrates multi-hop signals using an edge-aware module
with gated updates.

e We demonstrate strong performance under tight budget con-
straints by learning to prioritize high-impact edges early in
the decision process.

e We show that our method consistently outperforms state-
of-the-art baselines in influence spread and scales better on
large real-world networks.

2 Related Work

2.1 Traditional Influence Maximization

Influence maximization (IM) was introduced by Kempe et al. [49] as
a combinatorial optimization problem under the Independent Cas-
cade (IC) and Linear Threshold (LT) models. Subsequent research
focused on node activation, developing scalable algorithms with
approximation guarantees for unconstrained diffusion [4, 5, 8,9, 11-
13, 16, 18, 21, 34, 40, 41, 44, 45, 48, 61, 63, 66, 80, 82, 83, 88, 90]. This
assumption often fails in modern networks, where privacy and
limited propagation undermine node-centric methods. These limi-
tations motivated edge-based IM, where modifying connections is
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more feasible than activating users [14, 25, 26, 46, 50, 93, 94]. Edge-
centric methods leverage submodularity for IC and LT [26, 50],
while addressing constraints such as per-node edge budgets [14]
or candidate edge restrictions [93, 94]. However, these approaches
assume unrestricted propagation, either through existing edges
or newly inserted ones, and thus fail in closed networks, where
diffusion is limited to a chosen subset of edges.

2.2 Closed-Network Influence Maximization

Huang et al. [46] formulated Influence Maximization in Closed
Social Networks (IM-CSN), where diffusion is restricted by user-
or platform-level access controls. This shifts the focus from node
selection to edge activation under structural constraints, aiming
to maximize influence within subgraphs—better reflecting privacy-
aware platforms. The problem entails selecting a limited subset of
original edges to boost seed influence, addressed through a two-
stage method of topology expansion and influence-guided edge
ranking, which yields strong empirical performance.

2.3 DRL for Traditional IM

To address limitations of approximation methods, recent work has
explored Deep Reinforcement Learning (DRL) for IM, formulating
it as a sequential decision-making task. PIANO [59] uses Deep
Q-learning to select influential nodes and performs well in open
networks, but its node-centric actions and reliance on unrestricted
propagation make it unsuitable for IM-CSN. Other DRL-based ap-
proaches have been proposed for other IM variants, including group
IM [33], rumor containment [54], competitive influence via com-
munity detection [23], and trust-aware reward shaping [53]. Yet
they share these key limitations: (1) they define the action space
over nodes rather than edges, and (2) their reward functions do not
extend to edge activation scenarios. While DRIM [23] introduces
quota-based policies, it operates at coarse community granularity,
lacking support for fine-grained edge-level actions.

24

Despite growing interest in DRL for IM, existing methods have
not addressed edge activation in closed networks. The absence
of adaptable, learning-driven mechanisms for edge-level decision-
making under partial propagation represents a significant gap in
the literature. To the best of our knowledge, this work is the first
to formulate edge-level influence maximization in closed social
networks as a deep reinforcement learning (DRL) problem. Prior
efforts have either focused on node selection in open networks [59,
60] or used approximation algorithms for edge insertion in closed
networks [46], but these either ignore edge-level decisions [59, 60]
or lack a learnable, adaptive decision-making framework [46].

In contrast, our proposed method Reinforcement Learning for
Link Activation (RELINK) formalizes edge activation as the primary
decision variable within a Markov Decision Process (MDP), en-
abling sequential budget-constrained optimization with controlled
information propagation. By learning edge-level policies, RELINK
addresses key limitations of prior work and extends DRL-based
influence maximization to emerging privacy-sensitive social net-
works.

Motivation
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3 Preliminaries

In this section, we present the foundational concepts underlying
edge-based influence maximization in closed network settings.

A social network is a directed graph G = (V, E), where V is the
set of nodes (users), and E C V X V is the set of edges representing
connection links. Each edge (u,v) € E has a weight wy,, € [0, 1]
that quantifies the probability of influence from node u to node v.

A diffusion model ¢ defines the stochastic process by which
influence propagates through a directed graph G = (V, E). A widely
used model is the Independent Cascade (IC) model [49], in which
each directed edge (u,v) is associated with an independent activa-
tion probability wy, ». The cascade starts with a set of seed nodes S
active at time ¢ = 0 and progresses in discrete rounds. In round ¢ > 1,
every node u activated at t — 1 receives exactly one chance to trig-
ger each inactive out-neighbour v with probability wy, ,; successful
attempts activate v in round ¢. A newly activated node joins the
process in the next round and follows the same one-shot rule. Prop-
agation terminates when no new activations occur. The influence
spread, denoted by Z(y ) (S) or equivalently Z;(S), is defined as
the expected number of nodes activated at the end of the diffusion
process governed by ¢, starting from the seed set S.

DEFINITION 1. Marginal Influence Gain: Given a subgraph
G’ = (V',E’) of the graph G = (V,E), and a fixed seed setS C V,
the marginal influence gain of adding an edgee € E\ E’ to G’ is
defined as:

Ae; G, S) = Iyr prugey) (S) = Ly gy (S),

where Iy ) (S) denotes the expected number of activated nodes
from S under the diffusion model restricted to G’.

DEFINITION 2. Given a directed graph G = (V, E) and an integer
k > 1, a k-subnetwork is a subgraph Gy = (Vi, Ex) such that
Vi CV,Ex CE, and deg&k (v) < k forallv € Vi, where deggk (v)
denotes the out-degree of v in Gy.

For example, in the fourth panel of Figure 1, the subnetwork
consisting of solid green edges forms a 2-subnetwork of the directed
graph shown in the first panel.

DEFINITION 3. Influence Maximization in Closed Social
Networks (IM-CSN)[46]: Given a directed graph G = (V, E), a seed
set S C V, a diffusion model, and an integer k > 1, the objective is
to identify the optimal diffusion k-subnetwork G; = (V, E;) that
maximizes the expected influence spread from the seed set S. Formally,

G, = argmax I, (S),
er?(G)
where P (G) denotes the set of all possible k-subnetworks of G.

We formulate the IM-CSN problem as a sequential decision-
making task suitable for DRL. Given a directed graph G = (V, E),
a fixed seed set S C V, and an out-degree budget k, the agent in-
teracts with the environment over discrete time stepst = 1,...,T.
At each step ¢, the agent begins with the current subgraph G =
(V(t),E(t)). It then selects an edge a) = (o) € E\ E® to acti-
vate, such that the out-degree constraint is preserved. The selected
edge is added to the current edge set, updating the subgraph to
G(t+1) — (V(H'l),E(H'l)), where V(D) — y(8) {v} and E(t+1) —
E®W U {(u,0)}. After each edge activation, the agent receives a
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reward equal to the marginal influence gain, A(a(t )., S), with
respect to the seed set S (Definition 1).

The episode terminates when no further valid actions remain,
producing a k-subnetwork Gy = (Vg, Ex). The objective is to learn
a policy my that maximizes the expected cumulative reward:

T
ZA(a(t);G(t),S)}

t=1

Exg

The reward sequence forms a telescoping sum:

(I (8) = I50) (9) + (Ig@ (S) = Igm (5)) +- -
+ (I (S) = Igr-1 (8)) = Igm) (S) — I (S),

where G0 = (S, 0). Since I50) (S) is deterministic for a given S
and does not depend on 7y, maximizing the expected cumulative
reward is equivalent to maximizing E, [Z;(r) (S)], matching the
IM-CSN objective (Definition 3).

This formulation captures key constraints of the closed network
setting—specifically, node-level degree budgets and restricted in-
fluence propagation—and is well suited for DRL approaches that
leverage sequential feedback. In the following sections, we elabo-
rate on the DRL framework used to solve this problem.

4 Influence-Aware Embeddings

We introduce an influence-aware node embedding framework for
IM-CSN. Our embedding integrates five feature classes that cap-
ture structural, relational, and probabilistic signals indicative of
influence potential. By combining high-order graph features, com-
munity structure, and diffusion heuristics, it encodes both latent
pathways and activation likelihoods in a scalable representation.

We first describe each of the five feature classes used in construct-
ing the initial node representations, followed by an edge-aware
aggregation module that propagates multi-hop influence signals
through learned parameters.

4.1 Initial Node Representation

We construct high-dimensional node embeddings by aggregating
features across five distinct feature classes:

(1) Community and Structural Role Features: We detect com-
munities using the Louvain algorithm [10] and encode each node’s
community ID along with the size of its community. Structural
features used in the embedding include approximate betweenness
centrality [75] (identifying nodes on shortest paths), degree (con-
nectivity), bridge score [92] (capturing cross-community connec-
tions), and local clustering coefficient [79]. Together, these features
characterize a node’s position within and across community bound-
aries—key determinants of influence propagation [17].

(2) Path-Based Features: We compute three role-based features
per node: (i) the number of 2-hop neighbors, capturing local reacha-
bility; (ii) average path diversity, reflecting redundancy in influence
pathways; and (iii) an RMPP-based feature [14] that approximates
the most probable paths. These features capture influence propaga-
tion potential beyond immediate neighbors.

(3) Edge Weight Statistics: For each node v, we compute the
mean (i1,), maximum (max,), and variance (c2) of its outgoing edge
weights. These statistics capture heterogeneity in influence strength
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across outgoing edges and are essential for modeling diffusion
dynamics.

(4) Seed-Based Features: We encode three features: a binary in-
dicator of whether the node is a seed, a binary indicator of its
activation status, and the shortest-path distance to the nearest seed.
These features provide localized context about proximity to influ-
ence sources and recent activation events.

(5) Node2Vec Embedding: To encode global structural similar-
ity, we incorporate Node2Vec [36] embeddings computed over the
weighted adjacency matrix using biased random walks.

To ensure a compact representation, we apply Singular Value
Decomposition (SVD) [52] to reduce the final embedding (h) to a
fixed dimension d across all graphs, retaining the most informative
components.

This embedding compactly encodes both structural context and
influence dynamics. In contrast to prior work [47, 59, 60, 62], which
often focuses on isolated feature types—such as basic topological de-
scriptors, temporal patterns, or GNN-derived embeddings—we pro-
pose a unified representation that integrates community structure,
structural roles, and path-based dynamics. Structural role features
offer coarse-grained insights into diffusion pathways, while edge
activation statistics capture fine-grained variability in influence
strength. Seed-based features extend local context beyond binary
seed indicators [59], and Node2Vec embeddings complement both
structural and temporal cues used in prior approaches [47, 60]. Col-
lectively, these features produce node embeddings that integrate
graph topology with diffusion semantics, thereby overcoming key
limitations of prior approaches.

4.2 Edge-Aware Node Embedding Aggregation

To generate aggregated embeddings for each edge (i, j) € E, we
first compute an edge relevance score «;; based on the initial node
embeddings h;, h; € R and a trainable projection vector a € R2d:

aij = o (a’ [hyllh;] - wij)

where [-||-] denotes vector concatenation and o(-) denotes the
sigmoid function. The aggregated messages for node i are computed

as:
2
m = 3wy by m = Y (4%,
JEN; jen®

where
Ni=(jeVIGj)eE, NP ={keV]|(Ady > o).

Here, A is the adjacency matrix of the G, and A? encodes weighted
two-hop paths via intermediate nodes.
The aggregated messages are transformed using dimensionality-
preserving multi-layer perceptrons, ¢; and az:
= (1)
m;

(1))

= o1 (m; Ihl-(Z) (2)).

= aZ(mi

Node embeddings are updated using a gating mechanism that
balances the original and aggregated representations:

gi =0 (W, [hi I (" + ﬁl§2))]),

B =g ohi+(1-g)o (m +m),
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Figure 2: Overview of the RELINK framework. Given a IM-CSN instance, initial node embeddings are generated and aggregated
to compute edge-level Q-values. Guided by the k-subnetwork structural constraint, the edge with the highest Q-value is selected
in each iteration, and the process repeats until no candidate edges remain.

where © denotes element-wise multiplication, and W, € RA*2d jg
a learnable weight matrix.
To obtain the final representation, we add a degree-normalized

residual connection:

A

L (b,
ydeg(i)
where a; is a dimensionality-preserving MLP and deg(i) denotes
the degree of node i in the graph.

This edge-aware aggregation approach enables the model to
incorporate both local and second-order structural signals, while
prioritizing informative connections. By jointly leveraging multi-
hop message passing, and gated integration with residual pathways,
the resulting node embeddings are well-suited for capturing fine-
grained influence dynamics and structural context—key properties
for IM-CSN.

5 Learning Influence-Maximizing Subnetworks
via Deep Q-Learning

We present RELINK (Figure 2), a deep reinforcement learning (DRL)
framework that models the IM-CSN problem as a Markov Deci-
sion Process (MDP). The agent learns to sequentially construct an
influence-maximizing k-subnetwork by optimizing a Q-function
over the set of edges. This Q-function guides the construction of
the subgraph G = (Vg, Er). We now describe the MDP formula-
tion, Q-value computation, training algorithm, and inference-time
decision procedure in detail.

5.1 Problem Formulation as an MDP

We formulate IM-CSN as a finite-horizon MDP and solve it using
a DRL agent. The agent incrementally constructs a subgraph by
selecting edges that maximize cumulative influence, subject to a
k-outgoing edge constraint per node (Definition 2). The MDP is
defined by the tuple (S, A, T, r, y) with discount factor y € [0, 1].
State (S(!)): The state S(*) represents a partial subnetwork G =
(VO E®), where E) ¢ Eand V(®) includes all nodes incident to
edges in EM. A global seed set S C V is fixed at start and remains
unchanged throughout the episode. Each episode starts from the
initial state G(®) = (S, 0). The terminal state is reached when all
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nodes reachable from the seed set S in G(*) have exhausted their
out-degree budget of k edges.

Action (a(*)): Each action a') = (u,0) corresponds to activating a
directed edge that is not currently in E) The admissible action set
A(S (t)) includes edges that satisfy: (1) the out-degree constraint,
degg( » (4) <k, and (2) the requirement that u remains reachable

from the seed set S in G,
Transition (7): Applying action a'!) = (u,0) transitions the envi-
ronment from $(*) to §(t+1) by adding the selected edge:

s =5 U {wo)}, " =V ULEY U{w o).

Reward (r): The agent receives an immediate reward equal to the
marginal gain in influence (Definition 1):

r(8W, (u,0)) = A((1,0); G, 8) = I () = I (S),

We adopt an exact computation of influence under the IC model [49],
thereby avoiding approximate techniques such as RMPP [14] and
RIS [27]. Although computing true marginal gains (used for reward
estimation) is computationally intensive, our method restricts this
operation to the training phase, where greater computational re-
sources and time are available. This enables more informative and
stable learning signals.

We model the Q-function Q* (S(t), alt) = (u,v)) using a neural
approximator Q(S(t), ad) = (u,0);©), which estimates the ex-
pected cumulative reward for selecting edge (u, v) in state S (*) The
function is parameterized by ©.

5.2 Computing Q-Values for Candidate Edges

To estimate Q-values, we first compute edge-level features using
the aggregated node embeddings b/ € RIVIXd (from Sec. 4.2) and
edge weights w; ;. For each edge (i, j), we compute the feature f;;
as follows:

zj=¢ (ﬂl(hf)), zij = ¢ (Ba(wij)), fij = |zj.].zij] € R+

where f; : R? — R? and P2 : R — Rare learnable projections, and
¢ is the leaky-ReLU activation function. To discourage redundant
edge activations, we apply a penalty (p;) based on the cumulative
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incoming edge weight at node j:
A= ) wii pi=¢(45-B)
i:(i,j)€E
where f3 is a learnable scalar. This penalty is subtracted from all
edge features ending at node j, yielding adjusted features f;; =

fij — pj. The adjusted feature f; j is then passed through a fully
connected neural network NN (+) to estimate the Q-value as:

(S, (4,0);0) = NN (fuo)

5.3 Training

To improve stability, mitigate overestimation bias, and accelerate
convergence, we train 0 using an n-step Double Deep Q-Learning
(DDQN) approach [81, 85]. Specifically, we maintain two networks:
an online network O(-;©) and a target network O(-;07).

At each training step, the agent samples a batch of n-step transi-

tion sequences. For each sequence i, starting from state Si(t) and ac-
(t) (&) (t+1)

i i i e

and arrives at state Si(Hn). The target Q-value is computed as:

tiona; ’, the agent observes a reward trajectory (r

>0

n-1
g = Ym0 (Si(”"), argmax O(s; ", a'; ©); 9‘)
k=0

The online network parameters © are updated by minimizing the
mean squared error (MSE) over a batch of B transitions, according
to the following loss function:

LA 2
£©) =3 2 (01" a0 -y
i=

Training proceeds until convergence, with the target network
parameters ©~ periodically synchronized with the online network
to stabilize target estimation.

To balance exploration and exploitation during training, we
employ an e-greedy policy: with probability ¢, a random valid
edge from ?I(S(t )) is selected; otherwise, the action maximizing
Q(S(t), a® ;©) is chosen. The exploration rate ¢ decays over time,
gradually shifting the policy toward exploitation.

Throughout training, we restrict the action space to edges valid
under the current state, ensuring that the learned policy remains
compliant with the k-subnetwork structural constraint.

5.4 Inference

At test time, we begin with the given seed set S and G(©) = (S, 0).
At each decision step, we compute Q-values Q € RIEI using the
trained model. To enforce the k-subnetwork constraint, we apply
an action mask that filters out invalid edges—specifically, those
whose selection would violate the per-node out-degree limit by
exceeding the maximum of k outgoing activations.

From the remaining valid actions, we select the edge with the

highest Q-value:
a*= argmax 0, (u,0);0).
(w,0)eA(SD))

The selected edge is activated and added to the current subgraph,
updating the state. This process repeats iteratively until no valid

r(t+n—1)
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actions remain. The final subnetwork G = (Vi, Et) is returned,
and its influence is evaluated via I, (S). Since each node may
activate up to k edges, the maximum number of steps is bounded

by O(|V] - k).

6 Experiments

We evaluate our proposed approach, RELINK, against state-of-the-
art algorithms on the Influence Maximization in Closed Social Net-
works (IM-CSN) task. Empirical results demonstrate that the DRL-
based RELINK framework consistently outperforms existing meth-
ods. This section details the experimental setup, including datasets,
evaluation metrics, baselines, and implementation specifics. To
guide the analysis, we pose several key questions throughout.

6.1 Experimental Setup

Training Dataset Description: To train RELINK, we construct
synthetic datasets designed to reflect structural characteristics com-
monly observed in real-world social networks. We employ four
generative models: Barabasi—Albert preferential attachment net-
works [6], Watts—Strogatz small-world graphs [89], stochastic block
models [43], and Erdés—Rényi random graphs [28]. For each model,
we generate 10 network instances, yielding a total of 40 training
graphs with node counts ranging from 25 to 150.

Testing Dataset Description: We evaluate all methods on
20 real-world social network datasets that exhibit diverse structural
properties and vary widely in scale, spanning a broad spectrum
of domains and graph sizes to enable comprehensive evaluation
across heterogeneous settings. Table 1 provides a summary of node
and edge counts for each dataset. Following the preprocessing
protocol of Huang et al. [46], we convert each undirected edge into
a pair of directed edges in opposite directions. For each network,
we randomly sample seed sets S from the top 5% of nodes ranked
by degree, with |S| € {5,50,100, 200}, following the procedure
in Huang et al. [46]. We also vary the parameter k over the set
{5, 10, 20}, resulting in a total of 480 experimental configurations.

Diffusion Models: We evaluate all methods under the Indepen-
dent Cascade (IC) model®. During training, edge activation probabil-
ities are randomly sampled from the interval [0, 1]. For evaluation,
we adopt two standard weighting schemes from the IM literature:
(i) random weights [2, 7, 20, 32, 84, 91], where edge probabilities are
sampled from [0, 1], and (ii) uniform weights [2, 19, 20, 35, 49, 70],
where all edge probabilities are fixed at 0.5.

Baseline Methods: We compare against four established meth-
ods from the Influence Maximization in Closed Social Networks
(IM-CSN) literature [46]. The first three are traditional baselines
originally developed for traditional influence maximization and
subsequently adapted to the IM-CSN setting by Huang et al. [46].
These include: (i) the DEGREE-based method, which selects the top-
k outgoing edges per source node based on the degrees of the target
nodes; (ii) the FoF method, which prioritizes edges connecting node
pairs that share the most common neighbors; and (iii) the RaANDOM
method, which selects k outgoing edges per node uniformly at
random, with performance averaged over five runs. Additionally,

IRELINK can be readily adapted to a range of diffusion models—including the Linear
Threshold [49], Trigger [39], and Weighted Cascade (WC) [1] models—by appropriately
modifying the reward function before training the model.
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Table 1: Dataset Characteristics

Dataset (Name) Nodes | Edges
Residence hall (moreno-oz) [31, 55] 217 2674
Physicians (moreno-innovation) [24, 55] 241 1100
FilmTrust (librec-filmtrust-trust) [38] 874 1853
Email-Eu-core (email-Eu-core) [58, 95] 1005 | 25571
Adolesc. health (moreno-health) 55, 67] 2539 | 12971
Facebook (ego-Facebook) [65] 4039 | 88234
CiaoDVD (librec-ciaodvd-trust) [37] 4658 | 40133
Wikipedia vote (wiki-Vote) [57] 7115 | 103689
LastFM Asia (lastfm-asia) [78] 7624 | 27806
Facebook Large (musae-facebook) [76] 22470 | 171002
Twitter (ego-twitter) [65] 23370 | 33101
Google+ (ego-gplus) [65] 23628 | 39242
Math temporal (sx-mathoverflow) [71] 24818 | 506550
Deezer - RO (ro-deezer) [77] 41773 | 125827
Deezer - HU (hu-deezer) [77] 47538 | 222888
Deezer - HR (hr-deezer) [77] 54573 | 498203
Brightkite (Bright kite) [22] 58228 | 214078
Epinions (soc-Epinions1) [74] 75879 | 508841
Slashdot Zoo (slashdot-zoo) 55, 56] 79116 | 515399
Slashdot Feb’09 (soc-sign-Slashdot) [57] 82140 | 549202

we include Practical Subnetwork Augmentation (PSNA), a method
proposed specifically for IM-CSN by Huang et al. [46].

Neural Network Architecture: For each learnable layer in the
online and target networks, we employ a standardized architec-
ture consisting of a two-layer multilayer perceptron (MLP) with
64 and 32 hidden units, respectively, unless otherwise specified in
Sections 4.2 and 5.2. The embedding dimension (d), obtained via
singular value decomposition (SVD), is fixed at 16. ReLU activa-
tions are applied to hidden layers, while output layers use linear
activations. Target networks are updated using exponential mov-
ing average (EMA) [68], and the replay memory buffer is set to a
capacity of 1M transitions. All models are trained using the Adam
optimizer [51] and implemented in PyTorch [73]. All experiments
are conducted on a machine equipped with an NVIDIA A40 GPU
and an Intel(R) Xeon(R) Silver 4314 CPU.

Evaluation Criteria: For each method, we extract the selected
subgraph and estimate its influence spread using 100,000 Monte
Carlo simulations under the IC model [49]. Each experiment is
repeated 10 times, and we report the average influence spread and
total runtime across all runs.

6.2 Evaluating Known Methods vs RELINK:

Figure 3 presents a contingency table comparing our proposed
method against existing methods for the IM-CSN task. We conduct
480 experiments across 20 real-world social networks. Each cell
(i, j) in the table reports the number of instances (out of 480) in
which the method in row i achieved a higher average influence
spread than the method in column j. Notably, a single RELINK
model—trained on the synthetic datasets described in Section 6.1—is
evaluated across all combinations of these settings.

The color scale in Figure 3 visualizes relative performance: darker
blue cells indicate that the row method outperforms the column
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Figure 3: Contingency table comparing baseline methods
against our approach (RELINK). Each cell shows how often
the row method outperformed the column in average influ-
ence spread. Darker blue indicates more wins; darker red
indicates fewer.

method in most experiments, while darker red denotes the opposite.
Each cell shows the raw count of wins, and both axes enumerate
the compared methods.

The contingency table reveals that RELINK consistently outper-
forms all methods in at least 90% of the experiments, as indicated by
the dark blue shading in the last row. This highlights the robustness
and effectiveness of RELINK, which achieves the highest average
influence spread across the majority of experimental configurations.
Among the remaining methods, RANDOM ranks second, followed
by PSNA, while FoF and DEGREE perform worst on IM-CSN.

Q1. How does RELINK perform in terms of influence spread
compared to traditional IM baselines (RANDoOM, FOF, DEGREE)
Figure 3 shows that RELINK consistently outperforms all traditional
baselines. It achieves higher influence spread than RANDOM in 462
out of 480 experiments, and similarly outperforms DEGREE and FoF
in 464 and 462 cases, respectively. This relative ordering—RaNDOM
outperforming FoF, which in turn outperforms DEGREE—is consis-
tent with prior findings from Huang et al. [46].

Q2. How does RELINK compare to PSNA on the influence
spread metric, given that PSNA is specifically designed for
the IM-CSN task by Huang et al. [46]? RELINK outperforms
PSNA in 456 out of 480 experiments, while PSNA performs better in
only 24 cases. These results demonstrate the strong generalization
ability of our method, which remains effective even when compared
against a IM-CSN-specific baseline.

Influence Spread and Runtime Comparison

Figures 4 and 5 show comparisons of influence spread and runtime,
respectively. Although our full evaluation covers 20 datasets, multi-
ple edge budgets (k), and various weight initialization schemes, we
report line plots for ten representative datasets across all seed set
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Figure 4: Influence spread comparison for k = 20 and seed sets |S| € {5,50, 100, 200} across networks of varying sizes.

sizes under a fixed edge budget (k = 20) and uniform edge weights
due to space constraints. In both plots, the x-axis indicates the seed
set size (|S]), and the y-axis represents the evaluated metric—either
influence spread or runtime.

The selected datasets include one small-scale network (FilmTrust),
four medium-scale networks with fewer than 10,000 nodes (email-
Eu-core, CiaoDVD, Wikipedia Vote, and LastFM Asia), and five large-
scale networks (MUSAE Facebook, Math Overflow, Deezer HU, BK
and Epinions).

As shown in Figure 4, RELINK consistently achieves the highest

influence spread when the seed set size is small. While performance
gaps narrow as |S| increases, RELINK maintains superiority across
most configurations. Among the baselines, RaANpom and PSNA
generally perform best, followed by FOF and DEGREE.
Q3. How does the runtime of RELINK compare to all base-
line methods across different graph scales? Figure 5 presents
runtime results across ten datasets. On small- and medium-scale
graphs, RELINK incurs higher runtime compared to the other meth-
ods. This is expected, as our approach formulates edge selection
as a sequential decision-making process, selecting one edge per
step, in contrast to the other methods that select multiple edges in
a single pass [46]. Additionally, the node embedding initialization
introduces a fixed overhead.

However, as graph size increases, RELINK becomes increasingly
competitive—often matching or outperforming PSNA in terms of
runtime. This is largely due to the latter’s computational complex-
ity, O(I(|V] + |E]) log |V]| + |V|dm log d;,,), where I is the number
of iterations until convergence, |V| and |E| denote the number of
nodes and edges, and d,;, is the maximum in-degree. As graph scale
grows, PSNA’s runtime deteriorates, whereas RELINK benefits from
GPU-accelerated inference (see Section 5.4), enabling more favor-
able scalability. The traditional baselines—RaNDOM, DEGREE, and
FoF—require negligible preprocessing and maintain consistently
low runtime across all datasets.
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6.3 Detailed Comparison of RELINK vs PSNA

To enable a fine-grained comparison with PSNA—a baseline specif-
ically designed for the IM-CSN task—we present a heatmap in Fig-
ure 6, focusing on experiments with random edge weights. This vi-
sualization summarizes the relative performance of RELINK across
all 20 datasets and parameter configurations.

Each cell reports the ratio of average influence spread between
the two methods, computed as (Infrgr vk /Infpsna ). Datasets are
sorted by graph size along the y-axis, while the x-axis enumerates
combinations of edge budget (k) and seed set size (|S|). Blue cells
indicate configurations where RELINK outperforms PSNA; red cells
indicate the opposite; and white denotes comparable performance.
Color intensity corresponds to the magnitude of the performance
gap, with darker shades indicating larger differences.

The heatmap shows that RELINK method outperforms PSNA in
most configurations, as indicated by the dominant blue cells. How-
ever, as the edge budget k increases, the performance gap narrows,
with more light blue and white cells appearing on the right side of
the heatmabp, reflecting cases where PSNA catches up. On dense
graphs such as email-Eu-core, wiki-Vote, and sx-mathoverflow, PSNA
performs better for smaller seed set sizes. Nevertheless, RELINK
method remains superior in most settings, frequently achieving
influence spread improvements exceeding 15%.

Q4. How does RELINK method compare to PSNA in initi-
ating large-scale diffusion under constrained edge budgets
(i.e., lower values of k)? A key observation is that under low edge
budgets, RELINK significantly outperforms PSNA, as indicated by
the dark blue cells on the left side of the heatmap. This trend under-
scores RELINK’s strength in prioritizing high-impact edges early,
making it particularly effective in constrained settings, whereas
PSNA tends to close the gap under more relaxed budget conditions.

6.4 Training Time

As previously noted, we train a single model used across all experi-
ments. Training takes 6,257.329 seconds for 2,000 epochs. Due to the
use of true marginal gains, the training process is computationally
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Figure 6: Heatmap of influence ratios (InfRer Nk /Infpsna)-
X-axis: edge budget and seed set size (k:|S|); Y-axis: social
networks. Blue: RELINK outperforms PSNA; red: PSNA out-
performs. Darker shades indicate larger differences.

intensive. However, once trained, the model performs inference
without requiring influence spread estimation or approximation
(unlike PSNA), enabling greater scalability on large networks.
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6.5 Summary

We evaluate RELINK on 20 real-world social networks under the
Independent Cascade (IC) model, comparing it against four estab-
lished baselines: DEGREE, FOF, RANDoM, and PSNA. The model is
trained once on synthetic graphs designed to reflect diverse struc-
tural properties and is evaluated across a wide range of settings
by varying seed set sizes and edge budgets. RELINK consistently
achieves higher average influence spread than all baselines. The
gains are most prominent in low-budget scenarios and on large
graphs, where the method excels at selecting high-impact edges
early. As graph size increases, RELINK becomes increasingly com-
petitive with, and often outperforms, PSNA—a method specifically
designed for IM-CSN—in terms of runtime. These results highlight
the robustness, scalability, and strong generalization of RELINK.

7 Conclusion and Future Work

We introduced RELINK, a deep reinforcement learning (DRL) frame-
work for edge-level influence maximization in closed social net-
works. In contrast to traditional node-based strategies, our method
targets settings where privacy or structural constraints make direct
node activation infeasible. By framing the problem as a Markov
Decision Process (MDP), RELINK allows the agent to sequentially
activate edges to maximize cumulative influence spread, ultimately
identifying an optimal k-subnetwork for diffusion. Our method
integrates a rich node embedding pipeline, a sparse edge-aware ag-
gregation module, and action masking for policy feasibility. Our em-
pirical results demonstrate that RELINK consistently outperforms
state-of-the-art baselines in both influence spread and scalability.
In future work, we aim to extend RELINK to settings with dy-
namic topologies and adaptive constraints. Further exploration of
sample-efficient training strategies and theoretical analysis of pol-
icy optimality under submodular objectives also presents promising
directions. Extending the framework to dynamic or time-evolving
graphs, incorporating user-specific constraints, and integrating
uncertainty in diffusion models are promising directions.
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GenAlI Usage Disclosure

We used generative Al tools (e.g., ChatGPT) solely for language
edits—such as grammar, punctuation, and clarity improvement,
comparable to traditional writing assistants like Grammarly. These
tools were not used to generate original content or ideas. All sub-
stantive content was authored and verified by the authors.
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