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ABSTRACT

We put forward an augmented reality (AR) system using artificial
intelligence (AI) to guide users through real-world procedures. The
system uses the cameras of the headset to recognize objects and
their positions in real time. It constructs a model to predict: (i)
the task being completed, (ii) the step of the task they are on, and
(iii) whether they have made any errors. By updating this model in
real-time as the user completes the task, the system automatically
updates the instructions and cues provided to the user. This system
represents a step towards ubiquitous task guidance via AR.

Index Terms: Human-centered computing—Virtual Reality—
Mixed / augmented reality

1 INTRODUCTION

Augmented reality (AR) systems leveraging artificial intelligence
(AI) can provide powerful tools for guiding people through a work-
flow by providing instructions and superimposing visual cues into
the world. By performing object detection and real-time error de-
tection while dynamically updating instructions, users can complete
procedures faster and with fewer mistakes. We developed a model
that is able to track the state of a task and provide this information to
a user through an AR headset. This system makes use of the sensors
commonly equipped on such headsets to provide video and spatial
data to the model, allowing it to maintain this state.

While the system has broad potential applications to a wide range
of procedures, we demonstrate the system within the context of
cooking recipes. Our system is able to use sensor data to identify
the procedure being completed from a pre-existing set of trained
recipes. Multiple recipes are also able to be tracked simultaneously,
and can be automatically switched between to support concurrent
progress. Having been trained on these recipes, the model is able to
detect when an error has occurred in the completion of a recipe and
provide an alert to the user detailing the type of error, on what step
it was made, and how to address it.
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Figure 1: A user interacting with the UI. Included elements are the
main menu (top), instruction panel (bottom), and task list view (right).

2 USER INTERFACE

The AR system is run and displayed with the Microsoft HoloLens 2
headset. The visual interface was designed in Unity and has three
main components: the instruction panel, the task list view, and the
main menu (see Figure 1). All of these components can be grabbed,
moved, and scaled to the user’s preferences. The state of the recipe—
and therefore the contents of the interface—is determined by our
object detection and step prediction models. These models are not
always accurate, so the ability of the user to correct them is central
to our interaction design philosophy.

All buttons in the interface can be pressed with a hand motion or
by the user fixating their gaze on them. Because tasks often involve
manipulating objects, allowing selection with gaze fixation bypasses
the need to let go of objects or stop working on the task.

The instruction panel displays the text of the current step, as de-
tected by our step prediction model (see Section 4). When the model
detects that the current step is complete, the step is incremented. If
the detected step is inaccurate, the user can correct the model by
using the right and left arrows to navigate to the correct step.

The task list view displays the completion status for all the steps
in the recipe. Five steps are displayed on each page and the user is
able to move through pages to review them all. A checkmark or X
button next to each step allows the user to correct the model if a step
is incorrectly labeled as complete/incomplete.

The main menu provides the user with personalization and manual
controls. Additional recipes can be added, removed and switched
between by opening the View Recipes submenu. This can be useful
if the model fails to recognize a recipe or if the user wishes to begin
a recipe for which the materials are not present to be recognized.
The instructions panel and object locators can also be toggled on
and off. Object locators are red dots that appear in the view over
objects that are needed to complete the current step (see figure 2).



Figure 2: A mixed reality capture of a recipe being completed. Objects
needed for the recipe are indicated in the view with Object Locators
(red spheres rendered in AR).

3 OBJECT DETECTION

The object detection phase consists of several steps. The first one is
powered by the Grounding DINO [4] open-set object detector, which
adeptly identifies objects, yielding bounding boxes as initial output.
These bounding boxes are further analyzed using the CLIP model
for image feature extraction, which are fed into the PROTO CLIP [5]
model. The latter refines these bounding boxes, attaching them with
class names from a pre-determined set of 37 object classes.

For accurate real-time prediction of object masks for each de-
tected object, we employed MobileSAM [7], a variant of SAM [3]
optimized for efficiency. The integration of these models guarantees
precise object detection and segmentation, enabling us to pinpoint
exact object locations.

The last step is spatial mapping which generates precise 3D coor-
dinates for each detected object. This is achieved by aligning depth
frames with RGB frames, thus creating depth masks for each ob-
ject. These masks are essential in accurately mapping each object’s
position in 3D space. We use camera poses, intrinsic parameters,
and depth masks to transform the centers of detected 2D segmented
object masks into a global coordinate system. This enables the accu-
rate projection of corresponding 3D points onto the headset’s view
as shown in figure 2.

The above pipeline results in the detailed annotation of the input
image with bounding boxes, class labels, and the 3D coordinates
of each object. Furthermore, the pipeline generates comprehen-
sive masks and center points for every object, with all critical data,
including the 3D positions, communicated efficiently as ROS mes-
sages. This methodology enhances object localization accuracy in
AR environments and broadens the scope for innovative applications
in spatially complex AR settings.

4 STEP PREDICTION

In step prediction, we begin by annotating video segments with
corresponding recipe steps. This annotated data becomes the train-
ing dataset for a deep neural network, which uses Omnivore, a
transformer-based feature extractor [2], along with a linear classifier
emulating a noisy sensor for the dynamic probabilistic graphical
model (dynamic PGM). The dynamic PGM also incorporates infor-
mation about object and hand locations for user interaction analysis.

Additionally, the dynamic PGM integrates prior recipe knowl-
edge using task graphs to represent step order. As these task graphs
are directed and acyclic, any topological sort produces a valid step
sequence. This input aids the dynamic PGM in assessing step cor-
rectness and correcting feature extractor errors.

At each time step, the query variable—a Boolean indicator denot-
ing the completion of a step—relies on the continuous input from the
neural network, the persistence of the query variable from the previ-
ous timestamp, and the values of both descendants and ancestors of
the query variable from the previous timestamp.

We estimate the query variable using the classical particle filter-
ing algorithm [1]. This algorithm employs sequential importance
sampling to approximate the query variable by using particles. Fol-
lowing evaluation and weighting based on evidence probability and
prior states, we duplicate higher-weighted particles and eliminate
less accurate ones through re-sampling. This process yields the
states of each recipe step for presentation in the AR interface.

5 DISCUSSION AND FUTURE WORK

We have presented an AR task guidance system capable of track-
ing multiple concurrent cooking recipes and providing real-time
feedback and instruction. As was stated in Section 2, the ability to
correct the model on the state of the active recipe(s) is core to the
design of the user interface. As we continue development on the
system, we intend to make this functionality less and less necessary.

The current step prediction model principally relies on data about
ongoing activities and user-object interactions. These methods may
falter in scenarios involving occluded objects, steps with no physical
actions, and instances where actions or objects closely resemble or
form a subset of others. Enhancements to the model could address
these challenges through the incorporation of hand and object track-
ing and deducing actions from their respective trajectories. While
our dynamic probabilistic graphical model compensates for certain
inaccuracies, its efficacy could be improved by reducing noisy in-
put signals. Thus, accurate prediction and localization of steps in
egocentric procedural activities is a challenging problem. We have
also introduced a new dataset, CaptainCook4D [6], to encourage
research in this area.

In terms of the user interface, the interactions rely heavily on
physically pressing buttons, a desktop-oriented interaction technique.
The ability to press buttons with gaze fixation (see Section 2) was
added as a step toward AR-friendly interactions, but the interface
itself is still analogous to desktop applications. In future iteration,
we will explore alternative designs for 3D interaction techniques.
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