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Abstract

Our paper builds on the recent trend of using neu-
ral networks trained with self-supervised or super-
vised learning to solve the Most Probable Explana-
tion (MPE) task in discrete graphical models. At
inference time, these networks take an evidence
assignment as input and generate the most likely
assignment for the remaining variables via a sin-
gle forward pass. We address two key limitations
of existing approaches: (1) the inability to fully
exploit the graphical model’s structure and pa-
rameters, and (2) the suboptimal discretization of
continuous neural network outputs. Our approach
embeds model structure and parameters into a
more expressive feature representation, signifi-
cantly improving performance. Existing methods
rely on standard thresholding, which often yields
suboptimal results due to the non-convexity of the
loss function. We introduce two methods to over-
come discretization challenges: (1) an external
oracle-based approach that infers uncertain vari-
ables using additional evidence from confidently
predicted ones, and (2) a technique that identi-
fies and selects the highest-scoring discrete solu-
tions near the continuous output. Experimental re-
sults on various probabilistic models demonstrate
the effectiveness and scalability of our approach,
highlighting its practical impact.

1 INTRODUCTION

Probabilistic graphical models (PGMs) (Koller and Fried+
man, 2009), including Bayesian Networks (BN) and Markov
Networks (MN), are widely used to model large, multi-
dimensional probability distributions. However, as the com-
plexity of these distributions grows, solving NP-hard infer-
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ence tasks—such as determining the Most Probable Expla-
nation (MPE) through exact inference (Otten, 2012} |Otten
and Dechter} 2012)—becomes computationally infeasible,
which limits the scalability of these models in answering
complex probabilistic queries. Although several approxi-
mate solvers have been developed for the MPE task, they
often fail to achieve the accuracy required for real-world
applications.

Recent advancements in neural network-based approximate
solvers have addressed limitations in existing methods for
inference in PGMs. |Arya et al.| (2024b) introduced a novel
technique that combines inference-time optimization with a
teacher-student framework to answer MPE queries across
various Probabilistic Models (PMs). This technique builds
on the earlier work of|Arya et al.[(2024a), which targeted
both MPE and Marginal Maximum A Posteriori (MMAP)
queries in probabilistic circuits (Choi et al.l [2020). By
employing a self-supervised loss function, these methods
eliminate the need for exact solutions during training. Draw-
ing on the literature of learning to optimize (L1 and Malik|
2016 [Fioretto et al., [2020; Donti et al.| [2020; [Zamzam and:
Baker, 2020; |[Park and Hentenryck, 2023), they leverage
neural models to enable efficient probabilistic reasoning.
Furthermore, these neural-based MPE solvers provide two
key advantages: they deliver superior solution quality while
reducing inference time compared to traditional solvers.

In this paper, we focus on advancing two key aspects of
neural network-based models for answering MPE queries
over PGMs: improving the quality of input embeddings
for inference tasks and developing improved methods for
discretization of the neural network’s continuous outputs to
obtain MPE solutions. Existing approaches typically rely
on encoding schemes that focus solely on the probabilistic
query, failing to fully exploit the rich information embedded
in the PGM. Moreover, these methods often use thresh-
olding for discretization, which only considers the nearest
binary solution and may fail to identify the optimal MPE
solution due to the non-linearity of the self-supervised loss
function. As a result, these techniques are limited to solving
simpler problems where the model learns to answer a single
predefined query (Arya et al.,|2024a)), or they necessitate
test-time optimization to achieve near-optimal solutions for
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arbitrary queries (Arya et al.| [2024b).

In contrast, our approach handles arbitrary queries with-
out requiring test-time optimization by embedding both
the structure and parameters of PGMs into a hypergraph
representation (Dechter} [2019). We employ neural message-
passing algorithms within an attention-based Hypergraph
Neural Network (HGNN) (Bai et al., |2019) to efficiently
propagate information across the hypergraph. For initializ-
ing the HGNN embeddings, we utilize evidence-instantiated
factors and initial evidence values, along with partition sets.
This process produces more informative representations of
the PGM, eliminating the need for additional methods to
achieve near-optimal solutions.

To enhance the quality of MPE solutions, we further intro-
duce novel discretization techniques to derive MPE solu-
tions from continuous neural network outputs. The first
method utilizes the neural network’s outputs to identify vari-
ables with high uncertainty in their predictions. By augment-
ing the evidence with confidently predicted variables, the
problem is simplified to a query that an oracle can efficiently
solve. While neural networks excel at processing large
queries quickly, they may exhibit inaccuracies due to the
complexity of the loss function. In contrast, oracles—MPE
solvers like those in |Otten and Dechter| (2012)—provide
highly accurate solutions for smaller problems, though with
slower performance on larger queries. By combining the
strengths of both, this approach balances efficiency and
accuracy in solving MPE queries.

The second method enhances solution quality by systemati-
cally exploring the neighborhood of binary solutions around
the neural network’s continuous output. Unlike threshold-
ing, which evaluates only a single solution, this approach
examines multiple nearby binary solutions. By leverag-
ing the neural network’s predictions as a starting point and
examining various nearby configurations, this method effec-
tively navigates the solution space to yield superior solutions
compared to the thresholding approach. It also reduces the
number of hyperparameters by removing the need to choose
a specific threshold value, which may not generalize well
across different datasets or problem settings.

We conducted an extensive empirical evaluation, comparing
our proposed method against several traditional and neural
approaches. Our experiments, performed on a diverse set
of benchmark models, demonstrate that neural networks
trained using our HGNN embeddings and utilizing advanced
discretization techniques significantly outperform existing
models in both efficiency and accuracy.

2 BACKGROUND AND MOTIVATION

For simplicity, we use binary variables which take values
from the set {0, 1}. We denote random variables by upper-
case letters (e.g., X), their assigned values by lowercase

letters (e.g., x), and sets of random variables by bold upper-
case letters (e.g., X). For an assignment x to all variables
in X and a variable Y € X, let x¥ represent the projection
of the assignment x onto Y.

2.1 Hypergraphs

Hypergraphs extend the concept of traditional graphs by
allowing edges, known as hyperedges, to connect more than
two vertices. Formally, a hypergraph H = (V, £) consists
of a set of vertices V and a set of hyperedges £, where
each hyperedge e € £ is a subset of V. Unlike standard
graphs, where edges are binary relations between two nodes,
hypergraphs capture higher-order interactions among groups
of vertices, making them suitable for modeling complex
relational data in domains such as social networks, biology,
and machine learning. Hypergraphs can represent multi-way
dependencies, which are challenging to model using simple
pairwise connections.

Hypergraph-based approaches have gained widespread
recognition in representation learning for their ability to
capture higher-order correlations. Methods such as HGNN
(Feng et al.,|2019), HyperGCN (Yadati et al., [2019)), hyper-
graph convolution and attention operators (Bai et al.,2019),
HyperSAGE (Arya et al.; 2020), HNHN (Dong et al., [2020)
and UniGNN (Huang and Yang| 2021)) perform message
passing over the hypergraph structure to capture complex
relationships, improving the accuracy and robustness of
learned representations.

2.2 Probabilistic Graphical Models

In this paper, we focus on Probabilistic Graphical Models
(PGMs) (Koller and Friedman, 2009)), particularly Markov
and Bayesian networks. These models offer a framework for
representing and reasoning about complex probabilistic re-
lationships. PGMs enable the computation of the likelihood
(or a value proportional to it) of an assignment of values to
all variables in linear time in the size of the model. They
efficiently represent the joint distribution through factoriza-
tion, exploiting the conditional independence relationships
encoded via a graph.

Bayesian networks (BNs) utilize directed acyclic graphs
to represent conditional dependencies, allowing the joint
distribution to factorize as:

n

pm(X) = [T P(xilPa(X))

i=1

where X = {X3,..., X, } is the set of random variables,
and Pa(X;) denotes the parents of X; in the directed graph.
M denotes the Bayesian network (probabilistic model).

Markov networks (MNs) represent conditional dependen-
cies using undirected graphs. The joint distribution in these
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networks is expressed through potential functions, denoted
as ¢, which are defined over the maximal cliques of the
undirected graph:

pa(X) = 7 [] 0e(X.)

ceC

Here, C is the set of maximal cliques in the undirected
graph, ¢. are non-negative potential functions defined over
cliques, and Z is the partition function ensuring normaliza-
tion. Again, M represents the probabilistic model. Hence-
forth, we refer to both conditional probabilities in BNs and
potential functions in MNss as factors, denoted by F., where
c corresponds to the clique induced by the factor (in BN, ¢
refers to the clique formed by a node and its parents).

2.3 MPE Inference in PGMs

We focus on solving the Most Probable Explanation (MPE)
task in PGMs, which involves determining the most likely
assignment to unobserved (non-evidence) variables, given
observations (evidence). Formally, let M represent a PGM
defined over a set of variables X, with the associated dis-
tribution p ,,(X). The variables X are partitioned into evi-
dence E C X and query Q C X sets, such that ENQ = ()
and E U Q = X. Given an assignment e to the evidence
variables E, the MPE task is formulated as:

MPE(Q, e) = argmaxp,,(qle) = argmax {logp,,(q,e)}
a q
(D

It is known that the MPE task is NP-hard in general and even
hard to approximate (Cooper, 1990; |Park and Darwiche,
2004; de Campos}, 2011)).

2.4 Self-Supervised Loss for NN-based MPE Solver

Arya et al.[(2024a) introduced an approach that uses neural
networks to answer the MPE queries in Probabilistic Models
(PMs). Given data, where each example is an assignment
of values to the evidence variables, the main idea in their
method is to use a self-supervised loss to train the neural
network. At inference time, given a test example (an assign-
ment to the evidence variables), the neural network is used
to output the MPE assignment via a single forward-pass
over the network.

The self-supervised loss utilizes continuous NN outputs,
generated via sigmoid activations in the range [0, 1]. For
an MPE query MPE(Q, e), let q° € [0, 1]/l represent the
predicted continuous assignment. The goal is to maximize
log paq(q, €), or equivalently minimize the loss ¢(q, e) =
—logp (g, e). The NN outputs continuous values, how-
ever p o (q°, €) is not well-defined.

Arya et al. (2024a) leveraged the multilinear nature of
{(q,e), defining a continuous extension ¢°(q° e) that
matches the original loss on the discrete domain {0,1}"
but operates over [0, 1]™. This loss is further improved
by introducing an entropy-based penalty, parameterized by
a > 0, encouraging near-binary outputs and optimizing the
solution for MPE queries.

Motivation: A key limitation of the approach presented by
Arya et al.|(2024a)) is its reliance on a pre-defined partition
of variables into query and evidence subsets. To address this,
the authors later introduced the any-MPE task (see |Arya
et al.|(2024b)). In this task, given a probabilistic graphical
model (PGM), the neural network takes an assignment to an
arbitrary subset of variables (evidence) as input and outputs
the most likely assignments for the remaining (query) vari-
ables. The goal of this paper is to address and resolve two
main limitations of their approach.

First, Arya et al.’s (2024b) approach relies exclusively on the
query embedding (evidence values and the subsets of query
and evidence variables), without leveraging the structure
or parameters of the PGM. As a result, their method re-
quires test-time optimization, with much of its performance
gains attributed to this process. Second, their method uses
a thresholding procedure to derive the MPE solutions from
the continuous outputs of the neural network. This process
does not account for the network’s confidence or ensure that
the thresholded solution is the best discrete solution near
the continuous outputs. Given the non-linearity of the loss
function, the best solution might exist near the continuous
output.

In the following sections, we introduce a novel technique
that generates more informative embeddings of the MPE-
query by incorporating both the structure and parameters of
the given PGM with the query. Additionally, we propose
two methods that improve the conversion of continuous
outputs into discrete near-optimal solutions.

3 AN ADVANCED ENCODING FOR
ANY-MPE QUERIES IN PGMs

In this section, we introduce a hypergraph-based embed-
ding to tackle the any-MPE task. Given a PGM and evi-
dence—defined as an assignment of values to an arbitrary
subset of variables—our goal is to construct an information-
rich input encoding that captures the structure and parame-
ters of the PGM and characterizes the subsets of variables
representing both the query and evidence, along with the
corresponding assignment to the evidence variables. This
enriched encoding enhances generalization, reducing the re-
liance on expensive test-time optimization. Additionally, we
propose an output encoding that aligns the neural network’s
output layer with the given PGM, enabling efficient recovery
of the MPE solution from the network’s predictions.
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3.1 Integrating PGM Parameters Into the Encodings

Given an assignment to the evidence variables, a straight-
forward approach to utilize the parameters of the PGM into
the input encoding is to instantiate the evidence in each
factor/clique of the PGM and then concatenate the resulting
instantiated factors. More formally, we apply the following
transformation to each clique ¢y, and each observed variable
E=e:

0, if XkE 7é e
¢k(Xk)v E

if xx® =e

A key property of the resulting encoding, which is an in-
Jective mapping, is that it maintains a consistent length
across all possible evidence assignments, making the length
independent of the any-MPE query. This consistency is ben-
eficial as it ensures that the neural network receives inputs
of the same size. However, this approach has two signifi-
cant limitations: it fails to incorporate structural information
from the PGM, as the concatenation order is arbitrary, and
it does not facilitate message passing between cliques. To
address these issues, we aim to enhance the expressiveness
of these embeddings to achieve a more informative repre-
sentation.

or(Xy) = {

3.2 Hypergraph Based Encoding
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(a) Graph-based representation.
Nodes represent variables, and
edges capture pairwise depen-
dencies.

(b) Hypergraph-based represen-
tation. Hyperedges (colored re-
gions) represent cliques in the

Figure 1: Comparison of PGM structure representations: (a)
graph, and (b) hypergraph.

PGMs can be effectively represented using both hypergraphs
(Dechter} [2019) and graphs, with a one-to-one correspon-
dence between the nodes in these structures. Each factor
in the PGM corresponds to a clique in the graph, which
maps to a hyperedge in the hypergraph. Figure[I] provides
an example of these two representations for a PGM with 9
nodes, comprising 2 cliques of size 4, 1 clique of size 3, and
2 pairwise cliques. Each clique represents a factor involving
the associated variables in the PGM.

Building on this representation, we explore how a hyper-
graph framework enables the generation of richer embed-

dings for any-MPE queries. Utilizing Hypergraph Neural
Networks (HGNNGs) (Feng et al.,|2019), we aggregate em-
beddings within the hypergraph, enhancing the expressive-
ness of the resulting representation. Notably, hypergraph-
based neural networks exhibit superior performance in cap-
turing complex, higher-order relationships compared to tra-
ditional graph-based neural models (Feng et al.| 2019} |Cai
et al.l2022; |Chen and Schwaller, [2024).

To utilize HGNNS, three key components are required: (1)
A node feature matrix that represents each node’s feature
vector. (2) A sparse incidence matrix that encodes the con-
nectivity between nodes and hyperedges through the hyper-
edge indices, (3) Hyperedge feature matrices that allow the
model to incorporate edge-specific information.

The incidence matrix is derived directly from the PGM’s
clique structure. For hyperedge features, we use the embed-
dings introduced in Section Instead of concatenating
embeddings from all cliques to form a single representa-
tion, we keep them separate, enabling each embedding to
serve as the hyperedge attribute for its corresponding clique.
Node attributes consist of two values: the first represents the
node’s value (assigned as the observed value for evidence
variables or set to -1 for query variables), while the second
indicates whether the node belongs to the query subset (true
if it does, false otherwise).

To meet the uniform embedding size requirements of
HGNNs, we pad the embeddings with zeros. However,
when clique sizes vary significantly, this results in a sub-
stantial number of zeros in the embeddings. To mitigate
this issue, we reparameterize the PGM so that all cliques
have a uniform size. This is accomplished by first grouping
variables into clusters of a fixed size, initializing each cluster
potential to 1, and then multiplying each factor from the
PGM with a cluster potential that includes all variables in-
volved in that factor. This reparameterization preserves the
joint distribution of the PGM (Koller and Friedman) 2009)
while ensuring uniform clique sizes.

We then apply the hypergraph attention operator (Bai et al.,
2019) to aggregate these embeddings. The attention layers
process and combine information, producing aggregated
node embeddings that serve as the final representation. This
approach captures a rich representation incorporating (1)
the PGM’s structure, (2) its parameters, and (3) the details
of the specific query. By accumulating information from
neighboring nodes and cliques, it results in more expressive
node embeddings. Additionally, this method ensures an
injective mapping from any-MPE query to its correspond-
ing embedding, preserving the uniqueness of each query’s
representation.
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3.3 Neural Network Training

Given a PGM defined over n variables, we use the encodings
from either Section [3.1]or Section [3.2]as inputs to a neural
network. For the HGNN-based encoding, we concatenate
all node embeddings to form a final representation. The
network outputs n values using sigmoid activation, where
each output node corresponds to a variable X; € X. Out-
puts corresponding to evidence variables are disregarded,
and the self-supervised loss function is applied only to the
outputs for the query variables in Q.

We generate the training data following the process de-
scribed by |Arya et al.|(2024b). The neural network, along
with the encoder parameters (applicable for HGNN based
embedding), is trained using a tractable and differentiable
self-supervised loss function (see Section , which allows
efficient parameter learning from unlabeled data. Once
trained, the model can efficiently answer arbitrary MPE
queries over the PGM.

4 ADVANCED DISCRETIZATION
TECHNIQUES FOR ENHANCED MPE
SOLUTIONS

Both theoretical analyses and empirical evidence (Chizat
and Bachl 2018}; |Allen-Zhu et al., [2019; |IDu et al., 2018}
Zhang et al., |2016; |Qin et al., 2024} |Arora et al., [2019;
Jacot et al.l 2018} [Lee et al.l 2020alb) suggest that over-
parameterized networks trained with non-convex loss func-
tions (such as the one described in[2.4) tend to converge near
the global minimum after repeated gradient updates. Since
the true discrete and continuous losses coincide at {0, 1}",
the continuous outputs of a trained network are likely to be
close to a near-optimal discrete solution.

To obtain MPE solutions, the continuous outputs of the neu-
ral network must be discretized. A common approach used
in recent methods (Arya et al.,|2024alb)) applies thresholding
to map outputs to binary values. However, even when the
neural network converges near the global minimum, this ap-
proach can miss the optimal solution due to the non-linearity
of the loss function. Furthermore, it discards valuable infor-
mation from the continuous outputs by only considering the
nearest discrete solution, often leading to suboptimal results,
especially for non-linear loss functions.

To address these limitations, we present two novel discretiza-
tion techniques that provide superior solutions. Unlike
thresholding, these methods go beyond selecting a single
nearest discrete point by leveraging the output probabilities
to assess multiple candidate solutions or employing an or-
acle for uncertain variables. These approaches effectively
leverage the rich information within the continuous outputs,
leading to more accurate MPE solutions.

4.1 Oracle-Assisted Uncertainty-Aware Inference

The first proposed method, Oracle-Assisted Uncertainty-
Aware Inference (OAUAI), utilizes an Oracle to generate
solutions specifically for variables where the neural network
exhibits low confidence, reducing the likelihood of incorrect
MPE solutions. We first take the continuous output of the
neural network and compute confidence scores for each
query variable as ¢s; = |qf — 0.5|. These scores allow us
to divide the query variables into two subsets: (1) confident
variables (high cs;) and (2) uncertain variables (low cs;).

While confident variables are directly thresholded to pro-
duce binary outputs, uncertain variables are handled dif-
ferently to avoid relying on potentially inaccurate network
predictions. For these variables, an MPE Oracle is queried
to assign values that optimize the MPE objective. Similar to
the classic cutset conditioning method (Pearl and Dechter
1990), the Oracle processes a modified query where the
confident variables serve as additional evidence, thereby
reducing the number of variables involved in the query set.
The final MPE solution is then constructed by merging Ora-
cle’s output for the uncertain variables with the thresholded
outputs of the confident variables.

This method provides two key advantages: (1) It improves
solution quality by deferring the handling of low-confidence
variables to the Oracle for more accurate assignments. (2)
Limiting Oracle’s queries to only uncertain variables re-
duces the query set size, which increases Oracle’s efficiency
and decreases the overall computational complexity.

4.2 Fast Heuristic Search for Closest Binary Solutions

The second discretization method, referred to as Fast Heuris-
tic Search for Closest Binary Solutions (k-Nearest), aims
to identify multiple discrete candidates near the neural net-
work’s continuous output and select the optimal solution.
Given that exhaustively scoring all 2/ possible discrete so-
lutions is computationally prohibitive, we employ a heuristic
search algorithm to efficiently select the k nearest discrete
solutions. This approach balances solution quality and com-
putational feasibility, enabling the identification of high-
quality discrete outputs without exhaustive enumeration.

First, we define a distance measure between the continuous
output q° and a binary vector b of size N as:

N
D(a’b) = > |a5 — bil-
i=1

The following algorithm leverages this distance measure to
guide the heuristic search, enabling the efficient approxima-
tion of the k-nearest discrete solutions.

The algorithm employs pruning techniques to substantially
narrow the search space at each iteration by retaining only
the top-k partial assignments. By exploiting the problem’s
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Algorithm 1 Top-k Closest Binary Assignment Generation

1: Input: 9%, N, k
2: Qutput: Top k binary assignments B* minimizing

D(q®,b)
3 L« [(0,]])] > (distance, partial assignment)
4: for i =1to N do
5: T+ > Temporary list
6: for all (d,a) € L do
7: T+ TU(d+qf,a+0]) > For b; =0
8: T+« TU(d+(1-¢f),a+][1]) »Forb, =1
9: end for
10: Sort T' by d and keep top k
11: L+T
12: end for

13: Return top k assignments in L

optimal substructure, the algorithm iteratively builds upon
partial solutions to construct the final set of k-nearest dis-
crete solutions.

Consequently, the algorithms from {.T|and [4.2] serve as ad-
vanced discretization techniques for obtaining near-optimal
MPE solutions from the continuous neural network outputs.
Both techniques can also be applied simultaneously to the
neural network outputs, selecting the optimal solution for
each query by leveraging the better-performing approach.
This combined strategy, referred to as OAUAI | k-Nearest,
further improves overall solution quality by leveraging the
strengths of both discretization methods.

5 EXPERIMENTS

In this section, we evaluate the HGNN-based embedding
(Section along with the two thresholding methods pre-
sented in Sections and We benchmark these against
several baselines, including both neural network-based and
traditional algorithms that directly operate on probabilistic
models. We begin by outlining the experimental framework,
which includes the competing methods, evaluation metrics,
neural network architectures, and probabilistic graphical
models used in the study.

5.1 Graphical Models

We evaluated PGMs using thirty high-treewidth binary mod-
els from UAl inference competitions (Elidan and Globerson),
2010; [Dechter et al.,[2022). Among these models, twenty-
five contained cliques larger than size two, with variable
counts ranging from 360 to 1444 and a maximum clique
size of 12. The remaining five were pairwise networks with
variable counts ranging from 400 to 1600. For all models,
we merged smaller cliques to ensure all cliques were of size
> 4, using the method described in

We sampled data from the PGMs using Gibbs Sampling,

generating 16,000, 2,000, and 2,000 examples for the train-
ing, testing, and validation sets, respectively. The query
ratio (qr), defined as the fraction of variables in the query
set, was varied across {0.1,0.3,0.5,0.7,0.8,0.9} for each
PGM.

5.2 Baseline Methods and Evaluation Criteria

Baselines - We evaluated our methods against both tra-
ditional and neural-based MPE solvers. As a traditional
baseline, we employed the Max-Product Belief Propagation
(MP) algorithm (Pearl, |1988)), implemented by |Lowd and
Rooshenas|(2015). The MP algorithm serves as an approx-
imate inference technique designed to identify the Most
Probable Explanation (MPE) state.

As a neural-based baseline, we employed Self-Supervised
learning based MMAP solver for PCs (SSMP) (Arya et al.|
20244a), which only encodes the inference query information
as input to a neural network and applies thresholding for dis-
cretization. This approach enabled comparisons across two
dimensions of neural methods: embedding and discretiza-
tion techniques, which were tested in different combinations
during evaluation.

We did not include the inference time optimization scheme
(ITSELF) from|Arya et al.|(2024b) in our comparisons, as it
modifies network parameters during inference time to better
fit the given query. However, our proposed methods are
compatible with ITSELF and could be integrated to benefit
from its test time optimization capabilities.

Evaluation Criteria — The competing approaches were
assessed based on log-likelihood (LL) scores, calculated as
Inpq(e, q), and inference times for a given evidence e and
query output q.

5.3 Advanced Embedding and Discretization Methods

For each PGM and query ratio, we trained a neural net-
work using the embeddings described in and the self-
supervised loss from[2.4] An attention-based HGNN layer
was employed for embedding aggregation, with an input
embedding size of 2k where k is the number of variables in
the largest clique, and an output embedding size of 64. Each
model was trained for 20 epochs using the loss function
described in[2.4l We standardized the network architecture
(for the network that processes the embeddings) across all
experiments, using a fully connected NN with three hidden
layers (128, 256, and 512 nodes). All hidden layers used
ReLU activation functions, while the output layer applied
sigmoid functions with dropout regularization (Srivastava
et al., 2014). The models were trained using the Adam
optimizer (Kingma and Bal 2015)) and implemented in Py-
Torch (Paszke et al., [2019) and PyTorch Geometric (Fey
and Lenssen, 2019). All experiments were conducted on an
NVIDIA A40 GPU.
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Figure 2: Contingency tables (a) and (b): baseline methods vs. our approach. Each cell: frequency of the row method
outperforming the column method. Method names: embedding (right/top) and discretization (left/bottom) techniques.
Proposed method names are in bold. Heatmap (c) displays % differences in LL scores (color bar) between MP and HGNN:
OAUAL | k-Nearest for pairwise models. X-axis: query ratio; Y-axis: dataset names. Green cells: our method is better;
Orange cells: MP performs better. Darker shades indicate larger values.

5.4 Hyperparameters for Discretization Methods

We applied four discretization methods: (1) the threshold-
ing (Thresh) technique, which also serves as the baseline
discretization method in our experiments, using a threshold
of 0.5, as described in|Arya et al.[(2024alb), (2) the OAUAI
method from[&.1] (3) the k-Nearest method from[#.2] and (4)
a combination of the two (OAUAI | k-Nearest). For OAUAI,
we limited processing to a maximum of 1/4 of the query
variables or 200 (whichever was smaller) using distributed
AND/OR Branch and Bound (AOBB) as the chosen oracle,
following the method described in|Otten and Dechter| (2012)
method (implementated by [Otten| (2012)). For k-Nearest,
we set k to 1024.

We evaluated the methods on 30 PGMs, including the tra-
ditional baseline and neural network-based approaches em-
ploying different embedding schemes—query-based base-
line embedding (SSMP) and our proposed hypergraph neu-
ral network-based embedding (HGNN)—as well as differ-
ent discretization strategies—thresholding-based baseline
(Thresh), our proposed oracle-based method (OAUAI), near-
est discrete solutions-based method (k-Nearest), and their
combination (OAUAI | k-Nearest).

5.5 Empirical Evaluations

Evaluating Traditional and Neural Baselines vs Our
Methods:

Table [2a) presents the contingency tables for PGMs with
higher-order cliques, with detailed results provided in the
supplementary materials. We generated 150 test datasets
for the MPE task, utilizing 25 higher-order PGMs across
six different query ratios (gr). Each cell (4, j) in the table

indicates the number of instances (out of 150) where the
method in row ¢ outperformed the method in column j based
on average log-likelihood scores. Discrepancies between
150 and the sum of values for cells (%, j) and (7, ) reflect
cases where the methods achieved comparable scores.

Similarly, Table [2b]displays the contingency tables for pair-
wise models. Here, we generated 20 test datasets using
five PGMs across four query ratios (¢r), applying the same
interpretative framework as for Table [2a]

Both Tables[2Zaland 2Zhluse a color scale to illustrate the com-
parative strength of the methods. Darker green shades indi-
cate that the row method outperformed the column method
in a majority of experiments, whereas lighter shades or white
(corresponding to a cell value of 0) indicate the opposite,
with the column method prevailing more often. Each cell
displays its corresponding value. The left and bottom axis
labels denote the discretization schemes, while the right and
top axis labels indicate the embedding method used.

The analysis of the contingency tables for both higher-order
and pairwise models reveals a consistent pattern, where the
left side of the diagonal shows higher values, represented
by darker green shades. This indicates that methods listed
in the lower rows generally outperform those in the earlier
columns. This trend underscores the superiority of HGNN-
based methods, which are positioned in these lower rows,
over alternative approaches. Consequently, HGNN config-
urations consistently achieve higher log-likelihood scores,
surpassing both baseline and SSMP methods in effective-
ness. To facilitate a deeper analysis, we will now address
several key questions.

Q1. How do HGNN-based methods compare to tra-
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Figure 3: Heatmap displaying % differences in LL scores
(color bar) between MP and HGNN: OAUALI | k-Nearest for
higher-order models. X-axis: query ratio; Y-axis: dataset
names. Green cells: our method is better; Orange cells: MP
performs better. Darker shades indicate larger values.

ditional baseline MP? The values in the first row and
first column provide a comparison between the HGNN-
based methods and the traditional MP baseline. Specifically,
the last four values in the first column indicate how often
the HGNN-based embedding, using different discretization
methods, outperformed MP. Among these, HGNN: OAUAI

| k-Nearest demonstrated the strongest performance, sur-
passing the baseline in over 80% of cases for higher-order
models and more than 70% for pairwise models. Other meth-
ods also displayed competitive performance, indicating that
models that use our HGNN-based embedding consistently
outperform MP in most scenarios.

Q2. Does a more sophisticated hypergraph-based em-
bedding help? When comparing different methods that use
the same discretization technique but differ in their embed-
ding schemes, the HGNN-based embedding consistently
outperforms those relying solely on query information. For
higher-order networks, the HGNN-based embedding is su-
perior in at least 78% of cases. For pairwise models, it
consistently outperforms the alternative method in every
instance. This indicates that integrating information from
the PGM alongside query data significantly enhances per-
formance compared to embeddings based solely on query
information.

Q3. Are advanced discretization techniques more effec-
tive than simple thresholding? By examining methods
that utilize identical encoding schemes but differ in dis-
cretization techniques, we observe OAUAI performs the
best following by k-Nearest, and Thresh. Notably, OAUAI |
k-Nearest outperforms Thresh in nearly all cases for both
embeddings and across higher-order and pairwise models.
Furthermore, Thresh, which serves as the baseline for our
experiments, does not outperform any of the proposed meth-
ods, highlighting the substantial improvements offered by
advanced discretization techniques.

Detailed Comparison of Our Best Approach Against MP

To offer a more detailed comparison with the traditional
baseline (MP), we use heatmaps in Figures [2c| (Pairwise
models) andEl (Higher-order models) to illustrate the perfor-
mance of HGNN: OAUALI | k-Nearest (our best method) rel-
ative to the baseline. Along the y-axis, datasets are arranged
by the number of variables, while the x-axis represents
different query ratios. Each cell displays the percentage
difference in mean log-likelihood (LL) scores between the
methods, defined as %Diff. = 100 x (U, — Upp)/|llbp].
Green cells indicate where our method outperforms MP,
while orange cells denote cases where MP performs better.
Darker shades correspond to larger differences, with lighter
shades indicating smaller differences; white cells denote no
difference.

For pairwise models (Fig. , HGNN: OAUALI | k-Nearest
perform comparably to the MP approximation when the
query set size is small, as indicated by the light orange cells.
However, as the problem complexity increases with larger
query set sizes, our method consistently outperforms MP
across all datasets, shown by the green color. In these cases,
log-likelihood score improvements reach up to 40%.

A similar pattern emerges for higher-order models (Fig.
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Figure 4: Heatmap of inference times for pairwise PGMs.
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[3), where our method matches the baseline’s performance
for the smallest query ratio. However, as the query ratio
increases, the performance improvement becomes more
evident (up to 90% improvement), as indicated by the preva-
lence of dark green cells across most datasets. The heatmap
features only a few orange and white cells, indicating that
our method consistently outperforms the MP approximation
in the majority of scenarios.

One key reason for better performance on higher-order
networks is that these models inherently encode a large
amount of information within each clique, as each clique
is represented by 2* parameters (where k is the size
of the clique). This richness enables the HGNN-based
model to significantly enhance the quality of MPE solu-
tions. However, when combining cliques (e.g., ki ... k)
to form larger cliques from smaller ones, we transition from
2k 4 9k ... 4 2km parameters to 2F1 k2t Fhm param-
eters. This increase in parameters can result in embeddings
that are less representative. Additionally, the pairwise mod-
els used (networks from the grid family) often exhibit simi-
lar values in their factors, particularly for the (0,0):(1,1) and
(1,0):(0,1) pairs. As a result, when we take the product of
cliques, many of the initial embeddings also have similar
values, leading to less informative embeddings.

Inference Times

Figures [ present inference times for all baselines and pro-
posed methods on a logarithmic microsecond scale, where

lighter colors indicate faster times. Runtimes for higher-
order models appear in the supplement.

For all PGMs, SSMP with Thresh achieves the fastest in-
ference, followed by HGNN with Thresh, with a slight
overhead due to evidence instantiation and the attention
module. Next are k-Nearest, OAUAI, and HGNN: OAUAI
| k-Nearest, maintaining the same ranking across embed-
dings and trading speed for better solution quality. The MP
baseline consistently exhibits the longest inference times.

6 CONCLUSION AND FUTURE WORK

We introduced novel techniques for answering Most Prob-
able Explanation (MPE) queries in probabilistic graphical
models, starting with an advanced encoding strategy that
employs a HGNN to aggregate information from the query,
graphical model structure, and parameters. Additionally, we
proposed two novel discretization schemes, k-Nearest and
OAUAL, for converting the continuous outputs of the neural
network into discrete MPE solutions. These methods elim-
inates the need for test-time optimization to achieve near-
optimal solutions. Furthermore, our methods consistently
outperform both traditional baselines and neural network
approaches that neither utilize the PGM structure and param-
eters for embedding computation nor extend beyond thresh-
olding for discretization—a specific case of the k-Nearest
method when k£ = 1—as demonstrated by our evaluation
on 30 binary high tree-width probabilistic graphical model
benchmarks.

Future work includes addressing complex queries in PGMs
with constraints; integrating domain-specific prior knowl-
edge during training; boosting performance by developing
encoding schemes that achieve HGNN-level accuracy with
lower computational requirements; implementing joint train-
ing methods that optimize both the encoding network and
discretization schemes; etc.
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SINE: Scalable MPE Inference for Probabilistic Graphical Models
using Advanced Neural Embeddings:
Supplementary Materials

A Experimental Setup
A.1 Probabilistic Graphical Models

Table 1: Dataset Specifications for Higher-Order Probabilistic Graphical Models

Dataset Number of Variables | Number of Factors | Avg. Clique Size | Max. Clique Size
BN 80 360 360 6.18 12.00
BN 82 360 360 6.18 12.00
BN 84 360 360 6.18 12.00
BN 65 440 440 3.00 5.00
BN 46 499 499 3.40 6.00
BN 59 540 540 3.00 5.00
BN 63 540 540 3.00 5.00
BN 53 561 561 3.00 5.00
BN 55 561 561 3.00 5.00
BN 57 561 561 3.00 5.00

Maxsat aes 64 1 keyfind 1 596 2780 3.00 5.00
BN 47 661 661 3.00 5.00
BN 49 661 661 3.00 5.00
BN 51 661 661 3.00 5.00
BN 61 667 667 3.00 5.00
BN 42 880 830 3.00 5.00
BN 43 880 880 3.00 5.00
BN 44 880 880 3.00 5.00
BN 45 880 880 3.00 5.00
BN 30 1156 1156 2.00 3.00
BN 32 1444 1444 2.00 3.00
BN 34 1444 1444 2.00 3.00
BN 36 1444 1444 2.00 3.00
BN 38 1444 1444 2.00 3.00
BN 40 1444 1444 2.00 3.00

Table 2: Dataset Specifications for Pairwise Probabilistic Graphical Models

Dataset Number of Variables | Number of Factors | Avg. Clique Size | Max. Clique Size
2rid20x20.f5.wrap 400 1201 1.00 2.00
grid40x40.f10 1600 4721 1.00 2.00
2rid40x40.f10.wrap 1600 4801 1.00 2.00
grid40x40.f15 1600 4721 1.00 2.00
grid40x40.f15.wrap 1600 4801 1.00 2.00

Tables [I] and 2] summarize the details of the probabilistic graphical models used in the experiments. For higher-order PGMs,
the number of variables ranges from 360 to 1444, with an average clique size between 2.00 and 6.18. The maximum clique
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size varies from 3.00 to 12.00. In contrast, the pairwise PGMs exhibit a more uniform structure across the grid-based
datasets, with variables ranging from 400 to 1600 and factors ranging from 1201 to 4801.

A.2 Hyperparameter Configuration and Specifications

We designed our experimental framework to ensure consistency and efficiency across all experiments. For the neural network
models, we used a mini-batch size of 512 and applied a learning rate decay of 0.9 whenever the loss plateaued, improving
training efficiency. Parameters were initialized using the Kaiming normal distribution to ensure appropriate weight scaling
and support effective training.

We implemented the attention-based HGNN using PyTorch Geometric (Fey and Lenssen| [2019)), utilizing a single head for
the attention module. Optimal hyperparameters were determined through extensive 5-fold cross-validation, while other
hyperparameters followed the configurations in|Arya et al.|(2024alb).

For the baseline MP method, we utilized the implementation and default parameters from |Lowd and Rooshenas|(2015). For
comparison with optimal solutions, we employed AOBB (Otten and Dechter, 2012}, using the implementation from Otten
(2012), with default parameters applied. This algorithm also served as the oracle in the OAUAI method.

B Comparative Analysis of Inference Times

We present the inference times for all baselines and proposed methods in Figures[5|and[6] Both figures employ a logarithmic
microsecond scale, where color intensity represents inference duration—lighter hues denote shorter times.

For all PGMs, the SSMP method with Thresh and the HGNN method with Thresh exhibit the fastest inference, with SSMP
being marginally quicker. This marginal difference arises because the HGNN method requires evidence instantiation to
generate richer embeddings. Furthermore, the attention module in HGNN slightly increases inference time.

Following these are the k-Nearest, OAUAI, and HGNN: OAUALI | k-Nearest methods, which maintain the same relative
ranking for both embeddings. Although these discretization schemes require more time than the thresholding method
(Thresh), they produce significantly better solutions. Reducing the value of the hyperparameters—*# for k-Nearest and the
number of query variables for OAUAI—can decrease inference time, though at the cost of solution quality. Conversely,
increasing the value of these hyperparameters can improve solution quality at the cost of longer inference times. The MP
baseline exhibits the longest inference times.

C Comparing MPE Solutions of Proposed Methods Against Near-Optimal Solutions

Table 3: Gap Between AOBB and All Other Methods, Including Baselines and Proposed Methods, for Higher-Order PGMs:
Query Ratio 0.5.

PGM SSMP SSMP  SSMP SSMP HGNN HGNN HGNN HGNN —Worst-Best—
Th KN  OAUAI (KN|OAUAI)  Th KN  OAUAI (KN|OAUAI)
BN 42 0.10524 0.06363 0.06507 0.05166 0.15445 0.08236 0.04370 0.03969 0.11476
BN 43 0.21902 0.15704 0.17266 0.14554 0.25150 0.15481 0.04944 0.04876 0.20274
BN 44 0.18344 0.13335 0.12052 0.11149 0.10628 0.04523 0.05316 0.03503 0.14841
BN 45 0.17915 0.13698 0.11053 0.10570 0.08086 0.03768 0.03712 0.02808 0.15107
BN 46 0.28021 0.16378 0.18497 0.14652 0.38591 0.23951 0.16023 0.14308 0.24282
BN 65 0.41790 0.37808  0.22508 0.22489 0.11301 0.04416 0.01785 0.01775 0.40015
BN 80 027192 0.15047 0.08559 0.07923 0.00109  0.00000 0.00088 0.00000 0.27191
BN 82 0.15444  0.06093  0.08547 0.04847 0.00131  0.00002  0.00095 0.00002 0.15445
BN 84 0.20071 0.11452  0.15966 0.10912 0.06721  0.00049 0.06718 0.00049 0.20022
MAX-SAT | 0.03481 0.03248  0.02062 0.02062 0.03021 0.02819  0.01856 0.01856 0.01625

Tables [3| and [] present the log-likelihood score gaps between AOBB and various neural network techniques, including
embedding schemes—query-based (SSMP) and hypergraph neural network-based (HGNN)—as well as discretization
schemes: thresholding (Thresh), oracle-based (OAUAI), nearest discrete solutions-based (k-Nearest), and their combination
(HGNN: OAUALI | k-Nearest).

For each method M, the gap is calculated as the relative difference between the near-optimal score (determined by AOBB)
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Figure 5: Heatmap of inference times for Pairwise PGMs. The logarithmic microsecond scale is represented by color
intensity, with lighter hues indicating shorter, more efficient inference durations.
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Figure 6: Heatmap of inference times for Higher-Order PGMs. Color intensity represents a logarithmic microsecond scale,
with lighter hues indicating shorter inference durations.



Shivvrat Arya, Tahrima Rahman, Vibhav Gogate

Table 4: Gap Between AOBB and All Other Methods, Including Baselines and Proposed Methods, for Pairwise PGMs:
Query Ratio 0.5.

PGM SSMP SSMP  SSMP SSMP HGNN HGNN HGNN HGNN —Worst-Best—
Th KN OAUAI (KN|OAUAI) Th KN OAUAI (KN|OAUAI)

grid20x20.fS.wrap | 0.07852 0.06316 0.05627 0.05356 0.05836 0.04185 0.02456 0.02406 0.05446

grid40x40.f10 0.01859 0.01642 0.01586 0.01540 0.01312 0.01075 0.01154 0.01023 0.00835

grid40x40.f10.wrap | 0.01874 0.01645 0.01344 0.01337 0.01124  0.00909 0.00798 0.00756 0.01118

grid40x40.f15 0.02260  0.02004  0.01535 0.01533 0.01715 0.01455 0.01151 0.01151 0.01109

grid40x40.f15.wrap | 0.01858 0.01627 0.01323 0.01315 0.01388 0.01388 0.01031 0.01006 0.00853

and the score achieved by M. We evaluate the performance on datasets where AOBB can feasibly identify near-optimal or
exact solutions. In this experiment, the query ratio is set to 0.5 to improve the quality of the near-optimal solution. Higher
query ratios increase problem difficulty, making it more challenging to achieve near-optimal solutions.

The neural-based approach that achieves the best performance for each dataset is highlighted in bold. Smaller values indicate
better performance, as a smaller gap implies the method is closer to near-optimal solutions. The last column presents the
difference between the best (lowest) gap and the worst (highest) gap.

Notably, HGNN: OAUALI | k-Nearest consistently outperforms other neural baselines across most datasets. This method is
followed by OAUALI and k-Nearest, both utilizing HGNN for embedding. This analysis offers a comprehensive comparison
of the proposed methods with near-optimal solutions, demonstrating that HGNN-based approaches, particularly OAUALI,
k-Nearest, and HGNN: OAUAI | k-Nearest, consistently produce solutions with quality close to the optimal solutions.

D Detailed Analysis of Log Likelihood Scores

In this section, we compare the log-likelihood scores across various methods, including the traditional baseline (MP),
embedding schemes (query-based embedding (SSMP) and our hypergraph neural network-based embedding (HGNN)), and
discretization schemes (thresholding-based (Thresh), oracle-based (OAUAI), nearest discrete solutions-based (k-Nearest),
and the combination of the latter two (HGNN: OAUALI | k-Nearest)).

Figures [7)to [31] present the log-likelihood plots for higher-order PGMs, while Figures [32]to [36] show those for pairwise
PGMs. Each bar indicates the mean log-likelihood score of the respective method, with tick marks representing the standard
deviation. Higher log-likelihood values correspond to better performance.

D.1 Comparison for Higher-Order PGMs

Figures[/|to|31| present the log-likelihood scores for higher-order PGMs, highlighting the performance of our proposed
HGNN-based embedding and novel discretization schemes—oracle-based (OAUAI) and nearest discrete solutions-based (k-
Nearest)—compared to other baselines. These figures further validate the superior performance of HGNN embedding-based
methods over the traditional query-based embedding (SSMP), as demonstrated by the heatmaps and contingency tables in
the main paper. Additionally, the results show that OAUAI and k-Nearest outperform the traditional thresholding method
(Thresh). These visualizations provide a clear comparison of the performance between baseline methods and our proposed
methods across different higher-order PGMs and query ratios.

D.2 Comparison for Pairwise PGMs

Analyzing Figures [32|to|36] which focus on pairwise PGMs, reveals similar trends. The neural-based methods significantly
outperform the MP baseline at higher query ratios. Among these, OAUAI and HGNN: OAUAI | k-Nearest outperform all
baselines and neural methods across all larger query ratios. Additionally, all HGNN-based embeddings consistently surpass
the baseline embedding (SSMP), highlighting the enhanced representational power of HGNN. When comparing traditional
discretization methods with k-Nearest, OAUAI, and HGNN: OAUALI | k-Nearest, our proposed methods consistently
demonstrate superior performance. Even with the same trained neural network used for inference, advanced discretization
methods consistently outperform basic thresholding. These results underscores the superior effectiveness of these advanced
techniques in improving model performance.
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Figure 21: Evaluating Higher-Order PGMs: Log-Likelihood Scores on BN 53. Higher Scores Reflect Superior Model
Performance.
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Performance.

Query Ratio: 0.1 Query Ratio: 0.3 Query Ratio: 0.5

|

5854
S
—e212
6301
6571

6750
020
—7108

Mean Log-Li

1061

Query Ratio: 0.7 Query Ratio: 0.8 Query Ratio: 0.9

13
308
o3

3820
—a105
430
4675,
1960

"

—— MP == SSMP:Th == SSMP:KN == SSMP:0AUAl = SSMP:(KN|OAUAI) == HGNN:Th HGNN:KN == HGNN:OAUAI HGNN:(KN|OAUAI)

S04
1153
15094
2136
2162
2755
a5
311
5767

o024

5531
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Figure 27: Evaluating Higher-Order PGMs: Log-Likelihood Scores on BN 65. Higher Scores Reflect Superior Model
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Figure 29: Evaluating Higher-Order PGMs: Log-Likelihood Scores on BN 82. Higher Scores Reflect Superior Model
Performance.
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Figure 30: Evaluating Higher-Order PGMs: Log-Likelihood Scores on BN 84. Higher Scores Reflect Superior Model
Performance.
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Figure 31: Evaluating Higher-Order PGMs: Log-Likelihood Scores on Maxsat aes 64 1 keyfind 1. Higher Scores Reflect
Superior Model Performance.
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Figure 32: Evaluating Pairwise PGMs: Log-Likelihood Scores on grid20x20.f5.wrap. Higher Scores Reflect Superior Model
Performance.

Query Ratio: 0.7 . Query Ratio: 0.8 . Query Ratio: 0.9

|1L m| o HaE| ~

— MP —— SSMP:Th =—— SSMP:KN —— SSMP:OAUAI —— SSMP:(KN|OAUAI) = HGNN:Th HGNN:KN = HGNN:OAUAI HGNN:(KN|OAUAI)

Query Ratio: 0.5

Mean Log-Likelihood Score

Figure 33: Evaluating Pairwise PGMs: Log-Likelihood Scores on grid40x40.f10. Higher Scores Reflect Superior Model
Performance.
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Figure 34: Evaluating Pairwise PGMs: Log-Likelihood Scores on grid40x40.f15. Higher Scores Reflect Superior Model
Performance.
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Figure 35: Evaluating Pairwise PGMs: Log-Likelihood Scores on grid40x40.f10.wrap. Higher Scores Reflect Superior
Model Performance.
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Figure 36: Evaluating Pairwise PGMs: Log-Likelihood Scores on grid40x40.f15.wrap. Higher Scores Reflect Superior
Model Performance.
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