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Abstract

We propose a novel neural network-based approach
to efficiently answer arbitrary Most Probable Ex-
planation (MPE) queries in large probabilistic mod-
els, such as Bayesian and Markov networks, proba-
bilistic circuits, and neural auto-regressive models.
These MPE queries are not restricted by prede-
fined partitions of variables into evidence and non-
evidence groups. Our key idea is to distill all MPE
queries into a neural network, eliminating the need
for time-consuming inference algorithms on the
probabilistic model itself. We enhance this method
by incorporating inference-time optimization with
a self-supervised loss to iteratively improve the
solutions. Additionally, we use a teacher-student
framework to provide a better initial network, re-
ducing the number of necessary inference-time op-
timization steps. The teacher network, optimized
with a self-supervised loss function, seeks the ex-
act MPE solution, while the student network learns
from the teacher’s near-optimal outputs via super-
vised loss. We demonstrate the practicality, effi-
cacy and scalability of our approach across various
datasets and probabilistic models.

1 INTRODUCTION

Probabilistic models (PMs) such as Probabilistic Circuits
(PCs), Bayesian Networks (BNs), Markov Networks (MNs),
and Neural Autoregressive Models (NAMs) are widely used
for modeling large, multi-dimensional probability distribu-
tions. However, solving NP-hard inference tasks like finding
the Most Probable Explanation (MPE) is challenging and
time-consuming with exact inference techniques [35, 36].
Exact solvers are often impractical due to their slow speed,
and approximate solvers usually lack accuracy, particularly
in autoregressive models that rely on slow hill-climbing or

beam search methods.

Arya et al. [4] proposed using neural networks (NNs) to
solve the MPE task in PCs, inspired by learning to optimize
literature [12, 15, 29, 41, 54]. Their method involves training
a NN to map evidence variables to query variables, using
either supervised or self-supervised learning techniques.

We address a more general version of the MPE task, where
there is no predefined partition of variables into evidence
and query sets, referred to as the any-MPE task. This task is
complex due to the exponential increase in input configura-
tions and variable divisions. Our method applies to a broad
class of PMs, including BNs, MNs, and NAMs, unlike Arya
et al.’s method, which is limited to PCs.

Our novel approach uses a NN to solve the any-MPE task in
various probabilistic models, advancing in three key areas:

1. Efficient MPE Inference via Encoding Scheme and
Loss Function: We introduce a new encoding scheme tai-
lored to the input probabilistic model, delineating NN input
and output nodes, and propose a tractable self-supervised
loss function for efficient training.

2. Inference Time Optimization with ITSELF: Our new
inference technique, ITSELF, iteratively refines the MPE
solution during inference using gradient descent and our self-
supervised loss, enabling continuous improvement without
labeled data.

3. Two-Phase Pre-training with Teacher-Student Archi-
tecture: We propose a two-phase pre-training strategy to
address self-supervised learning and ITSELF challenges.
The teacher network overfits the training data using ITSELF,
while the student network learns from the teacher’s outputs
using supervised loss functions, providing a robust starting
point and reducing optimization steps.

Our experimental results demonstrate that our method sur-
passes existing approaches in both accuracy and speed
across various probabilistic models, including PCs, BNs,
MNs, and NAMs.
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2 BACKGROUND

We use binary variables with values from {0, 1}. An up-
percase letter denotes a random variable (e.g., X), and its
assigned value is denoted by lowercase letter (e.g., x). A set
of random variables is denoted by a bold uppercase letter
(e.g., X), and an assignment to all variables in the set by the
corresponding bold lowercase letter (e.g., x).

We use the term probabilistic models (PMs) to refer to mod-
els where computing the likelihood of an assignment to all
variables can be done in polynomial time. This includes
Bayesian and Markov networks (probabilistic graphical
models or PGMs) [26], smooth and decomposable prob-
abilistic circuits (PCs) [8], and neural autoregressive models
(NAMs) like NADE [49] and MADE [17].

We aim to solve the most probable explanation (MPE) task
in PMs: finding the most likely assignment to all unob-
served variables given observations. Formally, let M denote
a PM defined over variables X, representing the distribution
pM(x). Variables X are categorized into evidence E ⊆ X
and query Q ⊆ X, with E∩Q = ∅ and E∪Q = X. Given
an assignment e to E, the MPE task is:

MPE(Q, e) = argmax
q

pM(q|e) = argmax
q

log pM(q, e) (1)

MPE(Q, e) is NP-hard, even to approximate [9, 11, 43].

3 A SELF-SUPERVISED NEURAL
APPROXIMATOR FOR ANY-MPE

In this section, we develop a neural network (NN) approach
for solving the any-MPE task. Given a PM, we create an
input encoding (Section 3.1) that sets the number and values
of the NN’s input nodes for the MPE query. We also design
an output encoding to determine the number of output nodes
and recover the MPE solution from the outputs. For train-
ing, we introduce a tractable self-supervised loss function
(Section 3.2), whose global minima align with the MPE
solutions, enabling efficient learning from unlabeled data.

3.1 AN ENCODING FOR ANY-MPE INSTANCES

Since NNs require fixed-sized inputs and outputs, we intro-
duce input and output encodings that generate fixed-length
input and output vectors for each PM from a given MPE
problem instance MPE(Q, e). To encode the input, for each
variable Xi ∈ X, we associate two input nodes in the NN,
denoted by X̂i and X̄i. Thus for a PM having n (namely,
|X| = n) variables, the corresponding NN has 2n input
nodes. Given a query MPE(Q, e), we set the values of the
input nodes as follows: (1) If Xi ∈ E and Xi = 0 is in e,
then we set X̂i = 0 and X̄i = 1; (2) If Xi ∈ E and Xi = 1
is in e, then we set X̂i = 1 and X̄i = 0; and (3) If Xi ∈ Q
then we set X̂i = 0 and X̄i = 0. It is easy to see that the

input encoding described above yields an injective mapping
between the set of all possible MPE queries over the given
PM and the set {0, 1}2n. This means that each unique MPE
query (Q, e) will yield a unique 0-1 input vector of size 2n.

The neural network’s output consists of n nodes with sig-
moid activation, each linked to a variable Xi ∈ X. The MPE
solution can be constructed by appropriately thresholding
the output nodes corresponding to the query variables.

3.2 SELF-SUPERVISED LOSS FUNCTION

Given an MPE query, the NN’s output is continuous, ly-
ing in the range [0, 1]. Let qc ∈ [0, 1]|Q| be the predicted
MPE assignment. We want to minimize − log pM(q, e),
but pM(qc, e) is undefined for continuous outputs.

To address this, we use the property that for BNs, MNs, PCs,
and NAMs, ℓ(q, e) = − log pM(e,q) is either a multi-
linear polynomial or a neural network, and can be computed
in linear time. Specifically, we define a continuous loss func-
tion ℓc(qc, e) that coincides with ℓ on {0, 1}n. For PGMs
and PCs, ℓc is obtained by substituting each discrete variable
qi with the corresponding continuous variable qci ∈ [0, 1].
For NAMs, we perform a similar substitution.

Following Arya et al. [4], we improve the loss function
using an entropy-based penalty ℓE , governed by α > 0.

ℓE(q
c, α) = −α

|Q|∑
j=1

[
qcj log(q

c
j) + (1− qcj) log(1− qcj)

]
This penalty encourages discrete solutions by preferring
qcj values close to 0 or 1. Using the theory of Lagrange
multipliers, we can show that for any α > 0, the use of the
entropy penalty yields a tighter lower bound:

Proposition 1.

min
qc∈[0,1]n

ℓc(qc, e) ≤ min
qc∈[0,1]n

ℓc(qc, e)+ℓE(q
c, α) ≤ min

q∈{0,1}n
ℓ(q, e)

Using the Loss Function: We train a neural network with
2n input nodes and n output nodes using the self-supervised
loss function ℓc(qc, e) + ℓE(q

c, α). This trained NN can
answer any MPE query over the PM. Training data con-
sists of evidence assignments generated by sampling full
assignments to all variables, selecting evidence variables
randomly, and projecting full assignments onto evidence.
This approach eliminates the need for an external MPE
solver, using gradient-based training for supervision.

3.3 INFERENCE-TIME NEURAL OPTIMIZATION
USING SELF-SUPERVISED LOSS

Assuming the NN is over-parameterized, using the self-
supervised loss and repeatedly running gradient updates on
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the NN for a given dataset will lead to convergence near the
global minimum of the loss function [2, 13, 45, 55]. Thus,
the NN will find near-optimal MPE assignments for each
training example. This gradient update strategy can also be
applied during inference to iteratively improve the MPE
solution, maximizing the benefits of self-supervision.

More specifically, at test time, given a test dataset, we
initialize the NN either randomly or using a pre-trained
model, then iteratively run gradient updates until conver-
gence. The gradient is computed with respect to the self-
supervised loss function ℓc(qc, e) + ℓE(q

c, α). We call
this algorithm ITSELF (Inference Time Optimization using
SELF-Supervised Loss). ITSELF’s performance typically
improves with each iteration until the loss converges.

ITSELF is related to test-time training approaches in deep
learning [1, 10, 19, 30–32, 39, 48, 50, 56]. Unlike these
methods, our self-supervised loss’s global minima corre-
spond to MPE solutions if the penalty α is sufficiently large.

4 SUPERVISED KNOWLEDGE
TRANSFER FROM ITSELF

A drawback of our self-supervised loss function is that it is
non-convex function of the NN outputs. As a result, it has
larger number of local minima compared to supervised loss
functions, but also exponential number of global minima,
as an MPE problem can have multiple optimal solutions
[37]. Consequently, optimizing and regularizing with self-
supervised loss is more challenging for large datasets.

Moreover, our experiments indicate that large datasets re-
quire large, over-parameterized NNs to achieve near-optimal
MPE solutions. However, with limited training data and
sufficiently over-parameterized NNs, our preliminary exper-
iments and prior studies [3, 6, 23, 27, 28] suggest a higher
likelihood of approaching global optima. Specifically, with
a reasonably sized NN and a small dataset, the algorithm
tends to yield near-optimal MPE solutions. A further chal-
lenge is that even for small datasets, achieving convergence
from random initialization requires many gradient descent
iterations, making the training process inefficient.

4.1 TEACHER-STUDENT STRATEGY

To address challenges such as using small datasets with IT-
SELF, designing better initialization, and training with non-
convex loss functions, we propose a two-network teacher-
student strategy [7, 16, 20–22, 24, 38, 46, 51–53]. Both
networks have the same structure and are trained via mini-
batch gradient updates. The teacher network is overfitted to
the mini-batch using our self-supervised loss via ITSELF,
ensuring it finds near-optimal MPE assignments for all
examples in the mini-batch. The student network is then
trained with a supervised loss function like binary cross

Algorithm 1 GUided Iterative Dual LEarning with Self-
supervised Teacher (GUIDE)
1: Input: Training data D, teacher T and student S
2: Output: Trained student network S
3: Required: Database DB which stores the best assignment

and loss value for each e ∈ D
4: Initialize: Randomly initialize T , S, and DB
5: repeat
6: Sample a mini-batch D′ from D
7: Update the parameters of T using ITSELF and D′

8: for each example ei in D′ do
9: Make a forward-pass over T to yield qi for ei

10: Update the entry in DB for ei with qi if it has a lower
loss value than the current entry

11: end for
12: Update the parameters of S using the mini-batch D′ and

labels from DB and a supervised loss
13: T ← S ▷ Initialize T with S for the next iteration
14: until Convergence or max iterations

entropy, learning from the teacher’s outputs as soft labels.
This strategy mitigates optimization difficulties of the non-
convex self-supervised loss, allowing the student network
to achieve faster convergence and better generalization with
a smaller model size. It reduces the need for severe over-
parameterization and extensive training iterations for the
teacher network, improving initialization for ITSELF.

4.2 TRAINING PROCEDURE

Our proposed training procedure, which we call GUIDE , is
detailed in Algorithm 1. The algorithm trains a two-network
system comprising a teacher network (T ) and a student
network (S) with the same structure. The goal is to train
the student network using a combination of self-supervised
and supervised learning strategies. The algorithm takes as
input the training data D, along with the teacher and student
networks, T and S, respectively and outputs a trained net-
work S. A database (DB) is utilized to store the best MPE
assignment and corresponding loss value for each example
in D. The parameters of T and S, and the entries in DB,
are randomly initialized at the start.

In each epoch, a mini-batch D′ is sampled. T is updated
with ITSELF on D′. For each ei in D′, a forward-pass over
T yields qi. DB is updated if qi improves the loss as com-
pared to the current entry for ei in DB. Then, S is updated
with D′ and DB labels using a supervised loss. Finally, T
is reinitialized with S for the next epoch (addressing the
initialization issue associated with ITSELF).

Thus, at a high level, Algorithm 1 leverages the strengths
of both self-supervised and supervised learning to improve
training efficiency and reduce the model complexity, yield-
ing a student network S . Moreover, at test time, the student
network can serve as an initialization for ITSELF.
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MAX ML Seq SSMP GUIDE SSMP
ITSELF

GUIDE
ITSELF

MAX

ML

Seq

SSMP

GUIDE

SSMP
ITSELF

GUIDE
ITSELF

0 79 94 81 71 39 12

41 0 43 55 49 15 5

26 64 0 44 43 16 7

39 65 76 0 24 4 0

49 71 77 71 0 8 0

81 105 104 104 99 0 7

108 115 113 107 107 94 0

(a) PCs: Initial Solutions

MAX ML Seq SSMP GUIDE SSMP
ITSELF

GUIDE
ITSELF

MAX

ML

Seq

SSMP

GUIDE

SSMP
ITSELF

GUIDE
ITSELF

0 65 81 66 62 46 21

35 0 49 41 27 22 4

21 45 0 29 27 15 4

36 55 71 0 23 17 1

39 71 73 49 0 24 0

53 73 82 70 61 0 12

79 88 94 91 89 72 0

(b) PCs: Hill-Climbing

Figure 1: Contingency Tables

5 EXPERIMENTS

For lack of space, we only present experiments for PCs.

Datasets and Models: We used twenty binary datasets ex-
tensively used in tractable probabilistic models literature
[5, 18, 34, 49]—referred to as TPM datasets—for evaluating
PCs. To train Sum Product Networks (SPNs), our choice of
Probabilistic Circuits (PC)s, we employed the DeeProb-kit
library [33]. The query ratio (qr) is defined as the fraction
of variables in the query set. For each PM, we varied qr
with values from the set {0.1, 0.3, 0.5, 0.7, 0.8, 0.9}.

Baseline Methods: We employed three polynomial-time
baseline methods from the literature as initial benchmarks
[40, 44]. MAX Approximation (MAX) [44] transforms
sum nodes into max nodes and performs two passes over the
PC to compute an MPE solution. Maximum Likelihood
Approximation (ML) [40] computes the marginal distribu-
tion pM(Qi|e) for each variable Qi ∈ Q, and sets Qi to its
most likely value. Sequential Approximation (Seq) [40]
iteratively assigns query variables according to an order o.
At each step j, it selects the j-th query variable Qj in o and
assigns to it a value qj such that pM(qj |e,y) is maximized,
where y is an assignment of values to all query variables
from 1 to j − 1. Our study further assessed the impact of
initializing stochastic hill climbing searches using solutions
from all baseline approaches and our proposed methods for
MPE inference, conducting 60-second searches for each
MPE problem (see Park and Darwiche [40]).

Arya et al. [4] introduced Self-Supervised learning based
MMAP solver for PCs (SSMP), which trains a NN to handle
queries on a fixed partition of variables on PCs. We proposed
an extension of this approach for solving the any-MPE task.
We use it as another neural baseline. We used log-likelihood
(LL) scores, ln pM(e,q), and inference times for a given
evidence e and query output q to compare the algorithms.

Results: For each PM and query ratio, we implemented
two neural network training protocols: SSMP and GUIDE ,
subjecting each model to 20 training epochs as in Arya
et al. [4]. Both protocols employed two distinct inference
strategies: (1) a single forward pass through the network to

estimate query variable values (Arya et al. [4]), (2) our novel
test-time optimization-based approach Inference Time Self
Supervised Training (ITSELF), where we undertook 100
optimization iterations or terminated earlier upon achieving
convergence. We standardized network architectures across
all experiments (see supplement for more details).

We compare methods—including three polynomial-time
baselines, neural network-based SSMP, and our ITSELF
and GUIDE methods—on 20 TPM datasets as shown in the
contingency table in figure 1a (detailed results in the supple-
mentary materials). We generated 120 test datasets for the
Most Probable Explanation (MPE) task using 20 PCs across
6 query ratios (qr). Each cell (i, j) in the table represents
how often (out of 120) the method in row i outperformed the
method in column j based on average log-likelihood scores.
Any difference between 120 and the combined frequencies
of cells (i, j) and (j, i) indicates cases where the compared
methods achieved similar scores.

The contingency table for PC shows that the ITSELF meth-
ods outperform polynomial-time and traditional neural base-
lines. Specifically, GUIDE + ITSELF is superior to all
the other methods in almost two-thirds of the 120 cases,
while SSMP + ITSELF is better than both SSMP and
GUIDE without ITSELF. However, the polynomial-time
baseline MAX is better than both SSMP and GUIDE (note
that these methods were used in Arya et al. [4]), highlighting
ITSELF’s significant role in boosting model performance
for the complex any-MPE task.

Further analysis in Figure 1b compares our proposed meth-
ods with various baselines for initializing Hill Climbing
Search. The goal is to assess if ITSELF and GUIDE
improve anytime methods to surpass other heuristic ini-
tialization techniques. We observe that methods utilizing
ITSELF are superior for initializing local-search methods.

Our experiments answer the following two questions affir-
matively. First, because GUIDE is superior to SSMP, we
conclude that teacher-student training is better than training
a single NN with self-supervised loss. Second, Inference-
time optimization via ITSELF is superior to performing one
pass over the NN, and yields superior initialization for sub-
sequent discrete optimization methods like hill climbing.

Summary. We introduced novel methods for answering
MPE queries in probabilistic models using self-supervised
loss functions for tractable loss and gradient computations
during neural network training. We proposed ITSELF, an
inference time optimization technique that iteratively im-
proves MPE solutions via gradient updates, and GUIDE ,
a dual-network strategy combining supervised and unsu-
pervised training for better initialization. Tested on various
benchmarks, our method outperformed polytime baselines
and other neural methods, and enhanced the effectiveness
of stochastic hill climbing search strategies.
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A EXPERIMENTS

This section evaluates the ITSELF method (see section 3.3), the GUIDE teacher-student training method (see section 4)
and the method that uses only self-supervised training, which we call SSMP (see section 3.2). We benchmark these against
various baselines, including neural network-based and traditional polynomial-time algorithms that directly operate on the
probabilistic model. We begin by detailing our experimental framework, including competing methods, evaluation metrics,
neural network architectures, and datasets.

A.1 DATASETS AND GRAPHICAL MODELS

We used twenty binary datasets extensively used in tractable probabilistic models literature [5, 18, 34, 49]—referred to as
TPM datasets—for evaluating PCs and Neural Auto-Regressive Model (NAM). For the purpose of evaluating Probabilistic
Graphical Models (PGM)s, we utilized high treewidth models from previous UAI inference competitions [14].

To train Sum Product Networks (SPNs), our choice of PCs, we employed the DeeProb-kit library [33], with SPN sizes
ranging from 46 to 9666 nodes. For NAM, Masked Autoencoder for Distribution Estimation (MADE) models were trained
using PyTorch as described in [17]. In the case of Markov Networks (MNs), a specific category of PGMs, we utilize
Gibbs Sampling, generating 8000, 1000, and 1000 examples for the training, testing, and validation sets, respectively. The
query ratio (qr) is defined as the fraction of variables in the query set. For each PM, we varied qr with values from the set
{0.1, 0.3, 0.5, 0.7, 0.8, 0.9}.

A.2 BASELINE METHODS AND EVALUATION CRITERIA

PCs - We employed three polynomial-time baseline methods from the PC and PGM literature as initial benchmarks [40, 44].
MAX [44] transforms sum nodes into max nodes. During the upward pass, max nodes output the highest weighted value
from their children. The downward pass, starting from the root, selects the child with the highest value at each max node and
includes all children of product nodes. ML [40] computes the marginal distribution pM(Qi|e) for each variable Qi ∈ Q,
setting Qi to its most likely value. Seq [40] iteratively assigns query variables according to an order o. At each step j,
it selects the j-th query variable Qj in o and assigns to it a value qj such that pM(qj |e,y) is maximized, where y is an
assignment of values to all query variables from 1 to j−1. Our study further assessed the impact of initializing stochastic hill
climbing searches using solutions from all baseline approaches and our proposed methods for MPE inference, conducting
60-second searches for each MPE problem in our experiments, as detailed in Park and Darwiche [40].

NAMs - As a baseline, we used the stochastic hill-climbing search (HC). Similarly to the PC procedure, for each test
example, we conducted a 60-second hill-climbing search, initializing query variables randomly and setting evidence variables
based on the example.

PGMs - As a baseline we utilize the AND/OR Branch-and-Bound (AOBB)[36], employing the implementation described in
Marinescu [35]. Given that AOBB is an anytime scheme, for each test example, we designated a 60-second time limit for
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Figure 2: Contingency Tables

the inference process.

Neural Baselines - Arya et al. [4] introduced SSMP, which trains a neural network to handle queries on a fixed partition of
variables on PCs. We proposed an extension of this approach for solving the any-MPE task in PMs (see section 3.2), where a
single neural network is trained to answer any-MPE query. We use it as another neural baseline.

Evaluation Criteria - Competing approaches were compared using log-likelihood (LL) scores, calculated as ln pM(e,q),
and inference times for a given evidence e and query output q.

A.3 NEURAL NETWORK-BASED APPROACHES

For each PM and query ratio, we implemented two neural network training protocols: SSMP and GUIDE . We subjected
each model to 20 training epochs, adhering to the established procedures for SSMP as delineated by Arya et al. [4]. Both
protocols employed two distinct inference strategies, thus forming four neural-based variants. The first strategy consisted of
a single forward pass through the network to estimate query variable values, as specified by Arya et al. [4]. The second
strategy utilized our novel test-time optimization-based ITSELF approach for inference. For ITSELF, we undertook 100
optimization iterations or terminated earlier upon achieving loss convergence, applicable to both PCs and PGMs. In cases
involving NAMs, the optimization iterations extended to 1,000, or concluded upon convergence.

We standardized network architectures for PMs across all experiments. For PCs, we used a fully connected Neural Networks
(NN) with three hidden layers (128, 256, 512 nodes). For NAMs and PGMs, a single hidden layer of 512 nodes was
employed. All hidden layers featured ReLU activation, while the output layers used sigmoid functions with dropout for
regularization [47]. Optimization was performed using the Adam optimizer [25], and models were implemented in PyTorch
[42] on an NVIDIA A40 GPU.

Results for PCs: We compare methods—including three polynomial-time baselines, neural network-based SSMP, and our
ITSELF and GUIDE methods—on 20 TPM datasets as shown in the contingency table in figure 2a (detailed results in the
supplementary materials). We generated 120 test datasets for the MPE task using 20 PCs across 6 query ratios (qr). Each
cell (i, j) in the table represents how often (out of 120) the method in row i outperformed the method in column j based on
average log-likelihood scores. Any difference between 120 and the combined frequencies of cells (i, j) and (j, i) indicates
cases where the compared methods achieved similar scores.

The contingency table for PC shows that the ITSELF methods outperform polynomial-time and traditional neural baselines.
Specifically, GUIDE + ITSELF is superior to all the other methods in almost two-thirds of the 120 cases, while SSMP +
ITSELF is better than both SSMP and GUIDE without ITSELF. However, the polynomial-time baseline MAX is better
than both SSMP and GUIDE (note that these methods were used in Arya et al. [4]), highlighting ITSELF’s significant
role in boosting model performance for the complex any-MPE task.

We compare MAX and GUIDE + ITSELF using a heatmap in Figure 3a. The y-axis presents datasets by variable count
and the x-axis by query ratio. Each cell displays the percentage difference in mean LL scores between the methods, calculated
as %Diff. = 100× (llnn − llmax)/|llmax|. From the heatmap in Figure 3a for PCs, we observe that GUIDE + ITSELF
exhibit performance comparable to the MAX approximation when the query set size is small. As the problem complexity
increases with an increase in query set size, our new method consistently outperforms MAX across all datasets, except for
NLTCS and Tretail. Even when GUIDE + ITSELF underperforms compared to MAX (noted in 12 instances out of 120)
the performance gap is very small, evidenced by sparse red cells in the heatmaps.
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Further analysis in Figure 2b compares the performance of our proposed methods with various baselines as initialization
strategies for Hill Climbing Search. The goal is to assess whether ITSELF and GUIDE enhance anytime methods to
outperform other heuristic initialization techniques, with methods utilizing ITSELF proving superior in initializing local
search-based algorithms.

Results for NAMs: Our evaluation, detailed in the contingency table in Figure 2c, examines the performance of several
methods for NAM, including HC and two neural network methods, SSMP and GUIDE , each with two inference schemes.
We tested four neural-based schemes on 20 TPM datasets, generating 80 test datasets for the MPE task using 20 MADEs
across four query ratios (qr).

Similar to the results observed with PC, the GUIDE + ITSELF method exhibits superior performance over the baselines
and other neural inference schemes. HC outperforms SSMP, while GUIDE and SSMP + ITSELF are superior to HC.

The heatmaps in Figure 3b highlight the superior performance of GUIDE + ITSELF for NAMs, particularly in larger
datasets where it outperforms the HC baseline by over 50% in most cases, as indicated by the dark green cells. The
integration of GUIDE-based learning with ITSELF-based inference consistently outperforms the baseline across most
scenarios, with exceptions only in the Mushrooms, Connect 4, and Retail datasets. Thus, the GUIDE + ITSELF approach
significantly enhances MPE query answering in NAM models.

Results for PGMs: In our evaluation, as detailed in the contingency table in 2d, we assessed the efficacy of various methods
for PGMs, including AOBB and four neural-network-based methods, across four high-treewidth networks (details of these
networks are provided in the supplement). To accomplish this, we constructed 16 test datasets for the MPE task by employing
four PGMs across four query ratios (qr).

Similar to the outcomes observed with previous PMs, the methods employing ITSELF for inference consistently demon-
strate enhanced performance compared to the baseline methods AOBB and SSMP in most scenarios. Both GUIDE and
SSMP outperform AOBB in at least 50 percent of the tests.

Is Teacher Student Training Better than A Single Network Trained with Self-Supervised Loss? (SSMP versus
GUIDE): In our comparative analysis between SSMP and GUIDE across different models, we aim to evaluate the
performance of GUIDE against the traditional neural network training methods used in SSMP. Using traditional inference
schemes (i.e., one forward pass through the network), GUIDE consistently outperforms SSMP, demonstrating its superiority
in 60% of scenarios for PCs, more than 80% for NAM models, and 75% for PGM models. When employing ITSELF for
inference over the trained models, GUIDE continues to outperform SSMP, achieving better results in more than 75%, 85%,
and 80% for PCs, NAMs, and PGMs, respectively.

Does Inference Time Optimization help? (One Pass versus Multiple Passes): Comparative analyses reveal that ITSELF
consistently outperforms traditional single forward pass inference across various PMs. ITSELF with SSMP training
outperforms the other methods in over 85% of PC cases, and more than 75% for NAM and PGM models. When trained
using GUIDE , ITSELF demonstrates even better results, achieving superior performance in nearly 90% of PC cases and
75% for both NAMs and PGMs. GUIDE with the ITSELF inference scheme emerges as the best method across all our
experiments.

Finally, we present inference times in the supplement. For all the PMs, the neural based method that utilizes traditional
inference are the quickest. For MADE, the method employing a GUIDE-trained model with ITSELF is the second fastest.
Similarly, in PGMs, the GUIDE + ITSELF method emerges as the third fastest, after SSMP + ITSELF; in PCs, MAX
leads, slightly ahead of both GUIDE + ITSELF and SSMP + ITSELF, while ML and Seq record the longest inference
times.

Summary: Our experiments demonstrate that GUIDE + ITSELF outperforms both polynomial-time and neural-based
baselines across various PMs, as evidenced by higher log-likelihood scores. Specifically, ITSELF exceeds the capabilities
of traditional forward pass inference in addressing the challenging task of answering any-MPE queries within a probabilistic
model, highlighting the necessity of Inference Time Optimization. Additionally, the superiority of models trained with
GUIDE over SSMP underscores the effectiveness of using a dual network approach that utilizes two loss functions to
enhance the initial model quality and provide an optimal starting point for ITSELF.
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B MORE DETAILS ON EXPERIMENTS

B.1 DATASETS AND MODELS

Table 1 summarizes the datasets and the probabilistic circuits trained on them. We use the same datasets for both PCs [8] and
NAMs [17, 49]. The selection includes both smaller datasets, such as NLTCS and MSNBC, and larger datasets with over
1000 nodes. We utilize high treewidth grid Markov networks for PGM, specifically grid40x40.f2.wrap, grid40x40.f5.wrap,
grid40x40.f10.wrap, and grid40x40.f15.wrap. Each model contains 4800 variables and 1600 factors.

Table 1: Summary of datasets used with their respective numbers of variables and nodes in probabilistic circuits.

Dataset Number of Variables Number of Nodes
NLTCS 16 125
MSNBC 17 46

KDDCup2k 64 274
Plants 69 3737
Audio 100 348
Jester 100 274

Netflix 100 400
Accidents 111 1178

Mushrooms 112 902
Connect 4 126 2128

Retail 135 359
RCV-1 150 519
DNA 180 1855
Book 500 1628

WebKB 839 3154
Reuters-52 889 7348

20 NewsGroup 910 2467
Movie reviews 1001 2567

BBC 1058 3399
Ad 1556 9666

B.2 HYPERPARAMETERS DETAILS

Our experimental framework was meticulously designed to ensure consistency and efficiency across all conducted ex-
periments. For NAM’s we used MADE, the model was trained with two hidden layers, 512 and 1024 units each, using
hyper-parameters from [17].

For neural network models, the mini-batch size was set to 512 instances, and a learning rate decay strategy, reducing the rate
by 0.9 upon loss plateauing, was implemented to improve training efficiency. Optimal hyperparameters were identified via
extensive 5-fold cross-validation, as detailed in the main text.

In discrete loss scenarios, the hyperparameter α played a pivotal role. We undertook a methodical investigation to ascertain
the optimal value of α, examining the range 0.001, 0.01, 0.1, 1, 10, 100, 1000 for neural based models including ITSELF
and GUIDE . It is important to note that higher values of α constrain outputs to binary values more closely, aiding in
achieving near-optimal results.
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C A COMPARATIVE ANALYSIS OF PERFORMANCE OF ITSELF FOR DIFFERENT
PRE-TRAINING METHODS

This section evaluates the performance of models initialized through various techniques—random initialization, SSMP,
and GUIDE . Each plot represents the loss for a distinct test example, with the x-axis denoting the number of ITSELF
iterations and the y-axis showing the Negative Log Likelihood (NLL) scores. Lower NLL values signify better solutions.
Through this empirical assessment, we compare the impact of different pre-training methods on model performance.

Figures 4 to 27 present the plots for NAMs. The plots for PCs are shown in Figures 28 to 66. Figures 67 to 77 illustrate the
plots for PGMs. We selected the following datasets for PCs and NAMs: DNA, RCV-1, Reuters-52, Netflix, WebKB, Audio,
Moviereview, and Jester. For PGMs, we used all the datasets presented in the main paper. Each plot consists of two sections.
The left section presents the Negative Log-Likelihood Loss for 1000 iterations for all methods. The right section contains
two sub-plots: the top sub-plot displays the zoomed-in losses for the first 200 iterations, while the bottom sub-plot shows the
zoomed-in losses for the last 200 iterations.

We randomly initialize the parameters for the random model and perform 1000 iterations of ITSELF for inference. For the
two pre-trained models (SSMP and GUIDE), we update the top N layers, where N is the number of layers corresponding
to that loss curve, and fix the remaining bottom layers. We extract features by passing the input through these fixed layers
and then train the parameters of the top N layers. We again perform 1000 iterations of ITSELF for inference. For NAMs
and PGMs, we use neural networks with up to one hidden layer, while for PCs, we employ models with up to three hidden
layers.

From the plots for the three Probabilistic Modelss (PMs), we observe that models pre-trained using the proposed GUIDE
training scheme generally have a better starting point for ITSELF, indicated by a lower loss, compared to all other models.
Across a wide array of datasets, PGMs, and query percentages, the GUIDE method consistently converges to a lower or
equivalent loss compared to other models. Remarkably, it sometimes achieves a loss value that is less than half of the nearest
competing model. Furthermore, the losses for GUIDE are typically more stable than those of other initialization. In some
scenarios, all models achieve a similar final loss, although models initialized with SSMP and those randomly initialized may
experience oscillations in their loss values.

Models pre-trained using the traditional self-supervised loss (SSMP) typically have better or similar starting points than
randomly initialized models. However, models pre-trained using the SSMP method might converge to a worse loss than
their GUIDE pre-trained counterparts.

In most cases, convergence is rapid, even with a reduced learning rate of 10−4 compared to the experiments shown in the
main paper. Most methods converge within 200 to 300 iterations, although some may still oscillate during the later iterations
of ITSELF.
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Figure 4: Analysis of ITSELF Loss Across Various Pre-Trained Models for NAMs on the DNA Dataset at a Query Ratio
of 0.5.
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Figure 8: Analysis of ITSELF Loss Across Various Pre-Trained Models for NAMs on the RCV-1 Dataset at a Query Ratio
of 0.7.
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Figure 9: Analysis of ITSELF Loss Across Various Pre-Trained Models for NAMs on the RCV-1 Dataset at a Query Ratio
of 0.9.
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Figure 10: Analysis of ITSELF Loss Across Various Pre-Trained Models for NAMs on the Reuters-52 Dataset at a Query
Ratio of 0.5.
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Figure 11: Analysis of ITSELF Loss Across Various Pre-Trained Models for NAMs on the Reuters-52 Dataset at a Query
Ratio of 0.7.
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Figure 12: Analysis of ITSELF Loss Across Various Pre-Trained Models for NAMs on the Reuters-52 Dataset at a Query
Ratio of 0.9.
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Figure 13: Analysis of ITSELF Loss Across Various Pre-Trained Models for NAMs on the Netflix Dataset at a Query
Ratio of 0.5.
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Figure 14: Analysis of ITSELF Loss Across Various Pre-Trained Models for NAMs on the Netflix Dataset at a Query
Ratio of 0.7.
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Figure 15: Analysis of ITSELF Loss Across Various Pre-Trained Models for NAMs on the Netflix Dataset at a Query
Ratio of 0.9.
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Figure 16: Analysis of ITSELF Loss Across Various Pre-Trained Models for NAMs on the WebKB Dataset at a Query
Ratio of 0.5.

0 200 400 600 800 1000
Iterations

100

200

300

400

500

600

700

N
eg

at
iv

e
L

og
L

ik
el

ih
o
o
d

(N
L

L
)

S
co

re

Dataset: WebKB, Query Percentage: 0.7

Random, LR

Random, NN - 1 layers

SSMP, LR

SSMP, NN - 1 layers

GUIDE , LR

GUIDE , NN - 1 layers

0 100 200

200

400

600

900 1000

100

150

200

Figure 17: Analysis of ITSELF Loss Across Various Pre-Trained Models for NAMs on the WebKB Dataset at a Query
Ratio of 0.7.
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Figure 18: Analysis of ITSELF Loss Across Various Pre-Trained Models for NAMs on the WebKB Dataset at a Query
Ratio of 0.9.
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Figure 19: Analysis of ITSELF Loss Across Various Pre-Trained Models for NAMs on the Audio Dataset at a Query Ratio
of 0.5.
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Figure 20: Analysis of ITSELF Loss Across Various Pre-Trained Models for NAMs on the Audio Dataset at a Query Ratio
of 0.7.
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Figure 21: Analysis of ITSELF Loss Across Various Pre-Trained Models for NAMs on the Audio Dataset at a Query Ratio
of 0.9.
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Figure 22: Analysis of ITSELF Loss Across Various Pre-Trained Models for NAMs on the Movie reviews Dataset at a
Query Ratio of 0.5.
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Figure 23: Analysis of ITSELF Loss Across Various Pre-Trained Models for NAMs on the Movie reviews Dataset at a
Query Ratio of 0.7.
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Figure 24: Analysis of ITSELF Loss Across Various Pre-Trained Models for NAMs on the Movie reviews Dataset at a
Query Ratio of 0.9.
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Figure 25: Analysis of ITSELF Loss Across Various Pre-Trained Models for NAMs on the Jester Dataset at a Query Ratio
of 0.5.

25



0 200 400 600 800 1000
Iterations

40

45

50

55

60

65

70

75

N
eg

at
iv

e
L

og
L

ik
el

ih
o
o
d

(N
L

L
)

S
co

re

Dataset: Jester, Query Percentage: 0.7

Random, LR

Random, NN - 1 layers

SSMP, LR

SSMP, NN - 1 layers

GUIDE , LR

GUIDE , NN - 1 layers

0 100 200

50

60

70

900 1000

42

44

46

Figure 26: Analysis of ITSELF Loss Across Various Pre-Trained Models for NAMs on the Jester Dataset at a Query Ratio
of 0.7.
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Figure 27: Analysis of ITSELF Loss Across Various Pre-Trained Models for NAMs on the Jester Dataset at a Query Ratio
of 0.9.
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Figure 28: Analysis of ITSELF Loss Across Various Pre-Trained Models for PCs on the DNA Dataset at a Query Ratio of
0.1.
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Figure 29: Analysis of ITSELF Loss Across Various Pre-Trained Models for PCs on the DNA Dataset at a Query Ratio of
0.3.
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Figure 30: Analysis of ITSELF Loss Across Various Pre-Trained Models for PCs on the DNA Dataset at a Query Ratio of
0.5.
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Figure 31: Analysis of ITSELF Loss Across Various Pre-Trained Models for PCs on the DNA Dataset at a Query Ratio of
0.7.
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Figure 32: Analysis of ITSELF Loss Across Various Pre-Trained Models for PCs on the DNA Dataset at a Query Ratio of
0.9.
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Figure 33: Analysis of ITSELF Loss Across Various Pre-Trained Models for PCs on the RCV-1 Dataset at a Query Ratio
of 0.1.

29



0 200 400 600 800 1000
Iterations

30

40

50

60

70

N
eg

at
iv

e
L

og
L

ik
el

ih
o
o
d

(N
L

L
)

S
co

re

Dataset: RCV-1, Query Percentage: 0.3

Random, LR

Random, NN - 1 layers

Random, NN - 2 layers

Random, NN - 3 layers

SSMP, LR

SSMP, NN - 1 layers

SSMP, NN - 2 layers

SSMP, NN - 3 layers

GUIDE , LR

GUIDE , NN - 1 layers

GUIDE , NN - 2 layers

GUIDE , NN - 3 layers

0 100 200

40

50

60

70

900 1000

31.558

31.559

31.560

31.561

Figure 34: Analysis of ITSELF Loss Across Various Pre-Trained Models for PCs on the RCV-1 Dataset at a Query Ratio
of 0.3.
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Figure 35: Analysis of ITSELF Loss Across Various Pre-Trained Models for PCs on the RCV-1 Dataset at a Query Ratio
of 0.5.

30



0 200 400 600 800 1000
Iterations

50

60

70

80

90

100

N
eg

at
iv

e
L

og
L

ik
el

ih
o
o
d

(N
L

L
)

S
co

re

Dataset: RCV-1, Query Percentage: 0.7

Random, LR

Random, NN - 1 layers

Random, NN - 2 layers

Random, NN - 3 layers

SSMP, LR

SSMP, NN - 1 layers

SSMP, NN - 2 layers

SSMP, NN - 3 layers

GUIDE , LR

GUIDE , NN - 1 layers

GUIDE , NN - 2 layers

GUIDE , NN - 3 layers

0 100 200

60

80

100

900 1000

46

47

48

Figure 36: Analysis of ITSELF Loss Across Various Pre-Trained Models for PCs on the RCV-1 Dataset at a Query Ratio
of 0.7.
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Figure 37: Analysis of ITSELF Loss Across Various Pre-Trained Models for PCs on the RCV-1 Dataset at a Query Ratio
of 0.9.
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Figure 38: Analysis of ITSELF Loss Across Various Pre-Trained Models for PCs on the Reuters-52 Dataset at a Query
Ratio of 0.1.

0 200 400 600 800 1000
Iterations

100

150

200

250

300

350

400

N
eg

at
iv

e
L

og
L

ik
el

ih
o
o
d

(N
L

L
)

S
co

re

Dataset: Reuters-52, Query Percentage: 0.3

Random, LR

Random, NN - 1 layers

Random, NN - 2 layers

Random, NN - 3 layers

SSMP, LR

SSMP, NN - 1 layers

SSMP, NN - 2 layers

SSMP, NN - 3 layers

GUIDE , LR

GUIDE , NN - 1 layers

GUIDE , NN - 2 layers

GUIDE , NN - 3 layers

0 100 200

100

200

300

400

900 1000
75

80

85

Figure 39: Analysis of ITSELF Loss Across Various Pre-Trained Models for PCs on the Reuters-52 Dataset at a Query
Ratio of 0.3.
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Figure 40: Analysis of ITSELF Loss Across Various Pre-Trained Models for PCs on the Reuters-52 Dataset at a Query
Ratio of 0.5.
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Figure 41: Analysis of ITSELF Loss Across Various Pre-Trained Models for PCs on the Reuters-52 Dataset at a Query
Ratio of 0.7.
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Figure 42: Analysis of ITSELF Loss Across Various Pre-Trained Models for PCs on the Reuters-52 Dataset at a Query
Ratio of 0.9.
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Figure 43: Analysis of ITSELF Loss Across Various Pre-Trained Models for PCs on the Netflix Dataset at a Query Ratio
of 0.1.
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Figure 44: Analysis of ITSELF Loss Across Various Pre-Trained Models for PCs on the Netflix Dataset at a Query Ratio
of 0.3.
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Figure 45: Analysis of ITSELF Loss Across Various Pre-Trained Models for PCs on the Netflix Dataset at a Query Ratio
of 0.5.
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Figure 46: Analysis of ITSELF Loss Across Various Pre-Trained Models for PCs on the Netflix Dataset at a Query Ratio
of 0.7.
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Figure 47: Analysis of ITSELF Loss Across Various Pre-Trained Models for PCs on the Netflix Dataset at a Query Ratio
of 0.9.
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Figure 48: Analysis of ITSELF Loss Across Various Pre-Trained Models for PCs on the WebKB Dataset at a Query Ratio
of 0.1.
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Figure 49: Analysis of ITSELF Loss Across Various Pre-Trained Models for PCs on the WebKB Dataset at a Query Ratio
of 0.3.
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Figure 50: Analysis of ITSELF Loss Across Various Pre-Trained Models for PCs on the WebKB Dataset at a Query Ratio
of 0.5.
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Figure 51: Analysis of ITSELF Loss Across Various Pre-Trained Models for PCs on the WebKB Dataset at a Query Ratio
of 0.7.
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Figure 52: Analysis of ITSELF Loss Across Various Pre-Trained Models for PCs on the WebKB Dataset at a Query Ratio
of 0.9.
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Figure 53: Analysis of ITSELF Loss Across Various Pre-Trained Models for PCs on the Audio Dataset at a Query Ratio
of 0.1.
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Figure 54: Analysis of ITSELF Loss Across Various Pre-Trained Models for PCs on the Audio Dataset at a Query Ratio
of 0.3.
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Figure 55: Analysis of ITSELF Loss Across Various Pre-Trained Models for PCs on the Audio Dataset at a Query Ratio
of 0.5.
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Figure 56: Analysis of ITSELF Loss Across Various Pre-Trained Models for PCs on the Audio Dataset at a Query Ratio
of 0.7.
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Figure 57: Analysis of ITSELF Loss Across Various Pre-Trained Models for PCs on the Audio Dataset at a Query Ratio
of 0.9.
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Figure 58: Analysis of ITSELF Loss Across Various Pre-Trained Models for PCs on the Movie reviews Dataset at a Query
Ratio of 0.1.
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Figure 59: Analysis of ITSELF Loss Across Various Pre-Trained Models for PCs on the Movie reviews Dataset at a Query
Ratio of 0.3.
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Figure 60: Analysis of ITSELF Loss Across Various Pre-Trained Models for PCs on the Movie reviews Dataset at a Query
Ratio of 0.5.
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Figure 61: Analysis of ITSELF Loss Across Various Pre-Trained Models for PCs on the Movie reviews Dataset at a Query
Ratio of 0.7.
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Figure 62: Analysis of ITSELF Loss Across Various Pre-Trained Models for PCs on the Movie reviews Dataset at a Query
Ratio of 0.9.
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Figure 63: Analysis of ITSELF Loss Across Various Pre-Trained Models for PCs on the Jester Dataset at a Query Ratio of
0.1.
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Figure 64: Analysis of ITSELF Loss Across Various Pre-Trained Models for PCs on the Jester Dataset at a Query Ratio of
0.3.
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Figure 65: Analysis of ITSELF Loss Across Various Pre-Trained Models for PCs on the Jester Dataset at a Query Ratio of
0.5.
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Figure 66: Analysis of ITSELF Loss Across Various Pre-Trained Models for PCs on the Jester Dataset at a Query Ratio of
0.7.
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Figure 67: Analysis of ITSELF Loss Across Various Pre-Trained Models for PGMs on the grid40x40.f10.wrap Dataset at
a Query Ratio of 0.7.
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Figure 68: Analysis of ITSELF Loss Across Various Pre-Trained Models for PGMs on the grid40x40.f10.wrap Dataset at
a Query Ratio of 0.9.
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Figure 69: Analysis of ITSELF Loss Across Various Pre-Trained Models for PGMs on the grid40x40.f15.wrap Dataset at
a Query Ratio of 0.5.
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Figure 70: Analysis of ITSELF Loss Across Various Pre-Trained Models for PGMs on the grid40x40.f15.wrap Dataset at
a Query Ratio of 0.7.
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Figure 71: Analysis of ITSELF Loss Across Various Pre-Trained Models for PGMs on the grid40x40.f15.wrap Dataset at
a Query Ratio of 0.9.
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Figure 72: Analysis of ITSELF Loss Across Various Pre-Trained Models for PGMs on the grid40x40.f2.wrap Dataset at a
Query Ratio of 0.5.
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Figure 73: Analysis of ITSELF Loss Across Various Pre-Trained Models for PGMs on the grid40x40.f2.wrap Dataset at a
Query Ratio of 0.7.
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Figure 74: Analysis of ITSELF Loss Across Various Pre-Trained Models for PGMs on the grid40x40.f2.wrap Dataset at a
Query Ratio of 0.9.
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Figure 75: Analysis of ITSELF Loss Across Various Pre-Trained Models for PGMs on the grid40x40.f5.wrap Dataset at a
Query Ratio of 0.5.
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Figure 76: Analysis of ITSELF Loss Across Various Pre-Trained Models for PGMs on the grid40x40.f5.wrap Dataset at a
Query Ratio of 0.7.
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Figure 77: Analysis of ITSELF Loss Across Various Pre-Trained Models for PGMs on the grid40x40.f5.wrap Dataset at a
Query Ratio of 0.9.
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Figure 78: Heatmap depicting the inference time for MADE on a logarithmic microsecond scale, where a lighter color
denotes shorter (more favorable) durations.

We present the inference times for all baselines and proposed methods in Figures 78 to 80. Figure 78 details the inference
times for MADE, while Figures 79 and 80 respectively illustrate the times for PCs and PGMs. This comparison facilitates a
direct evaluation of the computational efficiency across different models.

Each cell displays the natural logarithm of the time, measured in microseconds, for each method and dataset. Lighter colors
indicate lower values. Notably, inferences using SSMP and GUIDE require the shortest time, as these methods necessitate
only a single forward pass through the neural network to obtain the values for the query variables.

For MADE, the subsequent fastest method employs a model trained with GUIDE and conducts inference using ITSELF,
outperforming the approach that uses SSMP for training. This advantage stems from the reduced number of ITSELF
iterations required by GUIDE , benefiting from a more effectively trained model. In PGMs, a similar pattern emerges with
GUIDE + ITSELF as the next fastest method, followed by SSMP + ITSELF. For PCs, MAX ranks as the next fastest,
closely followed by the GUIDE + ITSELF and SSMP + ITSELF methods. Finally, the ML and Seq methods display
the highest inference times.

Thus, if you require a highly efficient method capable of performing inference in a fraction of a millisecond, GUIDE is
the optimal choice. It outperforms the baseline for both MADE and PGMs. However, if higher log-likelihood scores are
necessary, GUIDE + ITSELF would be suitable, as it generally surpasses the baselines in speed and performance across
various scenarios.

E GAP ANALYSIS FOR PGM

Table 2 presents the gap in log-likelihood scores between the neural network techniques (SSMP, GUIDE , SSMP +
ITSELF, GUIDE + ITSELF) and the baseline model (AOBB). For each approach M, the gap is calculated as the
relative difference between the score of the near-optimal solution (determined by AOBB) and the score achieved by M. The
practicality of this evaluation stems from the utilization of small datasets, which enables the identification of exact solutions.
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Figure 79: Heatmap depicting the inference time for PC on a logarithmic microsecond scale, where a lighter color denotes
shorter (more favorable) durations.
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Figure 80: Heatmap depicting the inference time for PGM on a logarithmic microsecond scale, where a lighter color denotes
shorter (more favorable) durations.
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The final column emphasizes the neural-based approach that demonstrates superior performance for each dataset and
query ratio combination. Notably, GUIDE and ITSELF consistently surpass other neural baselines across almost all
dataset-query pairs. This examination offers a comprehensive assessment of the proposed methods on small datasets,
facilitating a comparison of their effectiveness.

Table 2: Gap Between AOBB And Other Methods.

Method Query Ratio SSMP GUIDE SSMP + ITSELF GUIDE + ITSELF Best Method
Grids-17 0.900 0.082 0.060 0.069 0.075 GUIDE
Grids-17 0.800 0.051 0.038 0.040 0.035 GUIDE + ITSELF
Grids-17 0.700 0.042 0.030 0.034 0.016 GUIDE + ITSELF
Grids-17 0.500 0.026 0.024 0.024 0.007 GUIDE + ITSELF
Grids-18 0.900 0.081 0.062 0.071 0.102 GUIDE
Grids-18 0.700 0.033 0.027 0.024 0.015 GUIDE + ITSELF
Grids-18 0.500 0.020 0.018 0.018 0.006 GUIDE + ITSELF
Grids-18 0.800 0.054 0.035 0.045 0.037 GUIDE
Segmentation-14 0.500 0.032 0.032 0.032 0.004 GUIDE + ITSELF
Segmentation-14 0.900 0.045 0.014 0.014 0.005 GUIDE + ITSELF
Segmentation-14 0.800 0.051 0.024 0.024 0.006 GUIDE + ITSELF
Segmentation-14 0.700 0.029 0.029 0.029 0.005 GUIDE + ITSELF
Segmentation-15 0.800 0.046 0.002 0.002 0.002 GUIDE + ITSELF
Segmentation-15 0.500 0.003 0.003 0.003 0.000 GUIDE + ITSELF
Segmentation-15 0.900 0.675 0.255 0.433 0.305 GUIDE
Segmentation-15 0.700 0.003 0.003 0.003 0.002 GUIDE + ITSELF

F LOG LIKELIHOOD SCORES COMPARISON

This section compares log-likelihood scores across baselines, SSMP, SSMP + ITSELF, GUIDE and GUIDE + ITSELF
for all datasets and PMs. The log likelihood plots for NAMs are depicted in Figures 81 to 100, while those for PCs are
illustrated in Figures 101 to 120. Each bar represents the mean log likelihood score of the corresponding method, with tick
marks indicating the mean ± standard deviation. Higher values in these scores signify better performance by the method,
considering they represent log likelihood scores.

F.1 SCORES FOR NAM

Figures 81 to 100 present the log likelihood scores for NAMs, illustrating the performance of ITSELF inference and
GUIDE training relative to other baselines. The heatmaps and contingency tables discussed in the main paper corroborate
the superior performance of GUIDE + ITSELF. These visual representations allow for a comprehensive understanding of
the performance of our methods and baseline approaches, including HC and SSMP, across various datasets and query ratios.

F.2 SCORES FOR PCS

Analyzing Figures 101 to 120, which focuses on PCs, reveals similar patterns. The neural-based methods significantly
outperform the MAX baseline. Among these, GUIDE + ITSELF surpasses all other polynomial-time baselines and neural
methods in over 80 percent of the experiments. This demonstrates that ITSELF substantially enhances the chances of
approaching optimal solutions by performing test-time optimization. When comparing traditional inference with ITSELF,
ITSELF consistently proves superior. Moreover, GUIDE outperforms the other neural-based training methods (SSMP).
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Figure 81: Log-Likelihood Scores on NLTCS for NAM. Higher Scores Indicate Better Performance.
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Figure 82: Log-Likelihood Scores on for NAM. Higher Scores Indicate Better Performance.
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Figure 83: Log-Likelihood Scores on KDDCup2k for NAM. Higher Scores Indicate Better Performance.
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Figure 84: Log-Likelihood Scores on Plants for NAM. Higher Scores Indicate Better Performance.
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Figure 85: Log-Likelihood Scores on Audio for NAM. Higher Scores Indicate Better Performance.
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Figure 86: Log-Likelihood Scores on Jester for NAM. Higher Scores Indicate Better Performance.
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Figure 87: Log-Likelihood Scores on Netflix for NAM. Higher Scores Indicate Better Performance.
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Figure 88: Log-Likelihood Scores on Accidents for NAM. Higher Scores Indicate Better Performance.
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Figure 89: Log-Likelihood Scores on Mushrooms for NAM. Higher Scores Indicate Better Performance.
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Figure 90: Log-Likelihood Scores on Connect 4 for NAM. Higher Scores Indicate Better Performance.
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Figure 91: Log-Likelihood Scores on RCV-1 for NAM. Higher Scores Indicate Better Performance.
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Figure 92: Log-Likelihood Scores on Retail for NAM. Higher Scores Indicate Better Performance.
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Figure 93: Log-Likelihood Scores on DNA for NAM. Higher Scores Indicate Better Performance.
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Figure 94: Log-Likelihood Scores on Movie reviews for NAM. Higher Scores Indicate Better Performance.
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Figure 95: Log-Likelihood Scores on Book for NAM. Higher Scores Indicate Better Performance.
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Figure 96: Log-Likelihood Scores on WebKB for NAM. Higher Scores Indicate Better Performance.
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Figure 97: Log-Likelihood Scores on Reuters-52 for NAM. Higher Scores Indicate Better Performance.
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Figure 98: Log-Likelihood Scores on 20 NewsGroup for NAM. Higher Scores Indicate Better Performance.

59



H
C

S
S

M
P

GU
ID
E

S
S

M
P

IT
S

E
L

F

GU
ID
E

IT
S

E
L

F

−3014

−2205

−1396

−587

222
Query Ratio: 0.5

H
C

S
S

M
P

GU
ID
E

S
S

M
P

IT
S

E
L

F

GU
ID
E

IT
S

E
L

F

−6137

−4478

−2818

−1159

500
Query Ratio: 0.7

H
C

S
S

M
P

GU
ID
E

S
S

M
P

IT
S

E
L

F

GU
ID
E

IT
S

E
L

F

−8340

−6102

−3864

−1625

613
Query Ratio: 0.8

H
C

S
S

M
P

GU
ID
E

S
S

M
P

IT
S

E
L

F

GU
ID
E

IT
S

E
L

F

−1397.6

−1218.6

−1039.6

−860.6

−681.6
Query Ratio: 0.9

M
ea

n
L

og
-L

ik
el

ih
o

o
d

S
co

re

HC SSMP GUIDE SSMP
ITSELF

GUIDE
ITSELF

Figure 99: Log-Likelihood Scores on Ad for NAM. Higher Scores Indicate Better Performance.
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Figure 100: Log-Likelihood Scores on BBC for NAM. Higher Scores Indicate Better Performance.
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Figure 101: Log-Likelihood Scores on NLTCS for PCs. Higher Scores Indicate Better Performance.
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Figure 102: Log-Likelihood Scores on for PCs. Higher Scores Indicate Better Performance.
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Figure 103: Log-Likelihood Scores on KDDCup2k for PCs. Higher Scores Indicate Better Performance.
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Figure 104: Log-Likelihood Scores on Plants for PCs. Higher Scores Indicate Better Performance.
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Figure 105: Log-Likelihood Scores on Audio for PCs. Higher Scores Indicate Better Performance.
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Figure 106: Log-Likelihood Scores on Jester for PCs. Higher Scores Indicate Better Performance.
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Figure 107: Log-Likelihood Scores on Netflix for PCs. Higher Scores Indicate Better Performance.
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Figure 108: Log-Likelihood Scores on Accidents for PCs. Higher Scores Indicate Better Performance.
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Figure 109: Log-Likelihood Scores on Mushrooms for PCs. Higher Scores Indicate Better Performance.
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Figure 110: Log-Likelihood Scores on Connect 4 for PCs. Higher Scores Indicate Better Performance.
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Figure 111: Log-Likelihood Scores on RCV-1 for PCs. Higher Scores Indicate Better Performance.
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Figure 112: Log-Likelihood Scores on Retail for PCs. Higher Scores Indicate Better Performance.
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Figure 113: Log-Likelihood Scores on DNA for PCs. Higher Scores Indicate Better Performance.
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Figure 114: Log-Likelihood Scores on Movie reviews for PCs. Higher Scores Indicate Better Performance.
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Figure 115: Log-Likelihood Scores on Book for PCs. Higher Scores Indicate Better Performance.
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Figure 116: Log-Likelihood Scores on WebKB for PCs. Higher Scores Indicate Better Performance.
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Figure 117: Log-Likelihood Scores on Reuters-52 for PCs. Higher Scores Indicate Better Performance.
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Figure 118: Log-Likelihood Scores on 20 NewsGroup for PCs. Higher Scores Indicate Better Performance.
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Figure 119: Log-Likelihood Scores on Ad for PCs. Higher Scores Indicate Better Performance.
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Figure 120: Log-Likelihood Scores on BBC for PCs. Higher Scores Indicate Better Performance.
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