
Neural Network Approximators for Marginal MAP in Probabilistic Circuits

Shivvrat Arya, Tahrima Rahman, Vibhav Gogate
The University of Texas at Dallas

{shivvrat.arya, tahrima.rahman, vibhav.gogate}@utdallas.edu

Abstract

Probabilistic circuits (PCs) such as sum-product networks
efficiently represent large multi-variate probability distribu-
tions. They are preferred in practice over other probabilistic
representations, such as Bayesian and Markov networks, be-
cause PCs can solve marginal inference (MAR) tasks in time
that scales linearly in the size of the network. Unfortunately,
the most probable explanation (MPE) task and its general-
ization, the marginal maximum-a-posteriori (MMAP) infer-
ence task remain NP-hard in these models. Inspired by the
recent work on using neural networks for generating near-
optimal solutions to optimization problems such as integer
linear programming, we propose an approach that uses neu-
ral networks to approximate MMAP inference in PCs. The
key idea in our approach is to approximate the cost of an as-
signment to the query variables using a continuous multilin-
ear function and then use the latter as a loss function. The two
main benefits of our new method are that it is self-supervised,
and after the neural network is learned, it requires only lin-
ear time to output a solution. We evaluate our new approach
on several benchmark datasets and show that it outperforms
three competing linear time approximations: max-product in-
ference, max-marginal inference, and sequential estimation,
which are used in practice to solve MMAP tasks in PCs.

Introduction
Probabilistic circuits (PCs) (Choi, Vergari, and Van den
Broeck 2020) such as sum-product networks (SPNs) (Poon
and Domingos 2011), arithmetic circuits (Darwiche 2003),
AND/OR graphs (Dechter and Mateescu 2007), cutset net-
works (Rahman, Kothalkar, and Gogate 2014), and proba-
bilistic sentential decision diagrams (Kisa et al. 2014) rep-
resent a class of tractable probabilistic models which are
often used in practice to compactly encode a large multi-
dimensional joint probability distribution. Even though all
of these models admit linear time computation of marginal
probabilities (MAR task), only some of them (Vergari et al.
2021; Peharz 2015), specifically those without any latent
variables or having specific structural properties, e.g., cut-
set networks, selective SPNs (Peharz et al. 2016), AND/OR
graphs having small contexts, etc., admit tractable most

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

probable explanation (MPE) inference1.
However, none of these expressive PCs can efficiently

solve the marginal maximum-a-posteriori (MMAP) task (Pe-
harz 2015; Vergari et al. 2021), a task that combines MAR
and MPE inference. More specifically, the distinction be-
tween MPE and MMAP tasks is that, given observations
over a subset of variables (evidence), the MPE task aims to
find the most likely assignment to all the non-evidence vari-
ables. In contrast, in the MMAP task, the goal is to find the
most likely assignment to a subset of non-evidence variables
known as the query variables, while marginalizing out non-
evidence variables that are not part of the query. The MMAP
problem has numerous real-world applications, especially
in health care, natural language processing, computer vi-
sion, linkage analysis and diagnosis where hidden variables
are present and need to be marginalized out (Bioucas-Dias
and Figueiredo 2016; Kiselev and Poupart 2014; Lee, Mari-
nescu, and Dechter 2014; Ping, Liu, and Ihler 2015).

In terms of computational complexity, both MPE and
MMAP tasks are at least NP-hard in SPNs, a popular class
of PCs (Peharz 2015; Conaty, de Campos, and Mauá 2017).
Moreover, it is also NP-hard to approximate MMAP in SPNs
to 2n

δ

for fixed 0 ≤ δ < 1, where n is the input size (Conaty,
de Campos, and Mauá 2017; Mei, Jiang, and Tu 2018). It is
also known that the MMAP task is much harder than the
MPE task and is NP-hard even on models such as cutset net-
works and AND/OR graphs that admit linear time MPE in-
ference (Park and Darwiche 2004; de Campos 2011).

To date, both exact and approximate methods have been
proposed in literature for solving the MMAP task in PCs.
Notable exact methods include branch-and-bound search
(Mei, Jiang, and Tu 2018), reformulation approaches which
encode the MMAP task as other combinatorial optimization
problems with widely available solvers (Mauá et al. 2020)
and circuit transformation and pruning techniques (Choi,
Friedman, and Van den Broeck 2022). These methods can
be quite slow in practice and are not applicable when fast,
real-time inference is desired. As a result, approximate ap-
proaches that require only a few passes over the PC are of-
ten used in practice. A popular approximate approach is to

1The MPE inference task is also called full maximum-a-
posteriori (full MAP) inference in literature. In this paper, we adopt
the convention of calling it MPE.

compute an MPE solution over both the query and unob-
served variables and then project the MPE solution over the
query variables (Poon and Domingos 2011; Rahman, Jin,
and Gogate 2019). Although this approach can provide fast
answers at query time, it often yields MMAP solutions that
are far from optimal.

In this paper, we propose to address the limitations of ex-
isting approximate methods for MMAP inference in PCs
by using neural networks (NNs), leveraging recent work
in the learning to optimize literature (Li and Malik 2016;
Fioretto, Mak, and Hentenryck 2020; Donti, Rolnick, and
Kolter 2020; Zamzam and Baker 2020; Park and Henten-
ryck 2023). In particular, several recent works have shown
promising results in using NNs to solve both constrained and
unconstrained optimization problems (see Park and Henten-
ryck (2023) and the references therein).

The high-level idea in these works is the following: given
data, train NNs, either in a supervised or self-supervised
manner, and then use them at test time to predict high-
quality, near-optimal solutions to future optimization prob-
lems. A number of reasons have motivated this idea of learn-
ing to optimize using NNs: 1) NNs are good at approxi-
mating complex functions (distributions), 2) once trained,
they can be faster at answering queries than search-based
approaches, and 3) with ample data, NNs can learn accurate
mappings of inputs to corresponding outputs. This has led
researchers to employ NNs to approximately answer proba-
bilistic inference queries such as MAR and MPE in Bayesian
and Markov networks (Yoon et al. 2019; Cui et al. 2022). To
the best of our knowledge, there is no prior work on solving
MMAP in BNs, MNs, or PCs using NNs.

This paper makes the following contributions. First, we
propose to learn a neural network (NN) approximator for
solving the MMAP task in PCs. Second, by leveraging the
tractability of PCs, we devise a loss function whose gradient
can be computed in time that scales linearly in the size of
the PC, allowing fast gradient-based algorithms for learning
NNs. Third, our method trains an NN in a self-supervised
manner without having to rely on pre-computed solutions to
arbitrary MMAP problems, thus circumventing the need to
solve intractable MMAP problems in practice. Fourth, we
demonstrate via a large-scale experimental evaluation that
our proposed NN approximator yields higher quality MMAP
solutions as compared to existing approximate schemes.

Preliminaries

We use upper case letters (e.g., X) to denote random vari-
ables and corresponding lower case letters (e.g., x) to denote
an assignment of a value to a variable. We use bold upper
case letters (e.g., X) to denote a set of random variables and
corresponding bold lower case letters (e.g., x) to denote an
assignment of values to all variables in the set. Given an as-
signment x to all variables in X and a variable Y ∈ X, let
xY denote the projection of x on Y . We assume that all ran-
dom variables take values from the set {0, 1}; although note
that it is easy to extend our method to multi-valued variables.

Probabilistic Circuits

A probabilistic circuit (PC) M (Choi, Vergari, and Van den
Broeck 2020) defined over a set of variables X represents a
joint probability distribution over X using a rooted directed
acyclic graph. The graph consists of three types of nodes:
internal sum nodes that are labeled by +, internal product
nodes that are labeled by ×, and leaf nodes that are labeled
by either X or ¬X where X ∈ X. Sum nodes represent
conditioning, and an edge into a sum node n from its child
node m is labeled by a real number ω(m,n) > 0. Given an
internal node (either a sum or product node) n, let ch(n)
denote the set of children of n. We assume that each sum
node n is normalized and satisfies the following property:∑

m∈ch(n) ω(m,n) = 1.
In this paper, we focus on a class of PCs which are smooth

and decomposable (Choi, Vergari, and Van den Broeck
2020; Vergari et al. 2021). Examples of such PCs include
sum-product networks (Poon and Domingos 2011; Rahman
and Gogate 2016b), mixtures of cutset networks (Rahman,
Kothalkar, and Gogate 2014; Rahman and Gogate 2016a),
and arithmetic circuits obtained by compiling probabilis-
tic graphical models (Darwiche 2003). These PCs admit
tractable marginal inference, a key property that we lever-
age in our proposed method.

Definition 1. We say that a sum or a product node n is de-
fined over a variable X if there exists a directed path from n
to a leaf node labeled either by X or ¬X . A PC is smooth if
each sum node is such that its children are defined over the
same set of variables. A PC is decomposable if each prod-
uct node is such that its children are defined over disjoint
subsets of variables.

Example 1. Figure 1(a) shows a smooth and decomposable
probabilistic circuit defined over X = {X1, . . . , X4}.

Marginal Inference in PCs

Next, we describe how to compute the probability of an as-
signment to a subset of variables in a smooth and decom-
posable PC. This task is called the marginal inference (MAR)
task. We begin by describing some additional notation.

Given a PC M defined over X, let S, P and L denote
the set of sum, product and leaf nodes of M respectively.
Let Q ⊆ X. Given a node m and an assignment q, let
v(m,q) denote the value of m given q. Given a leaf node
n, let var(n) denote the variable associated with n and let
l(n,q) be a function, which we call leaf function, that is de-
fined as follows. l(n,q) equals 0 if any of the following two
conditions are satisfied: (1) the label of n is Q where Q ∈ Q
and q contains the assignment Q = 0; and (2) if the label of
n is ¬Q and q contains the assignment Q = 1. Otherwise,
it is equal to 1. Intuitively, the leaf function assigns all leaf
nodes that are inconsistent with the assignment q to 0 and
the remaining nodes, namely those that are consistent with
q and those that are not part of the query to 1.

Under this notation, and given a leaf function l(n,q), the
marginal probability of any assignment q w.r.t M, and de-
noted by pM(q) can be computed by performing the follow-

+

(0.0778)

×(0.026) ×(0.1)

X1

(1)
+

(0.026)

+

(0.1)
¬X1

(1)

×(0.03) ×(0.02) ×(0.12)

+

(0.3)

¬X2

(1)

+

(0.1)

X2

(1)

+

(0.2)

¬X2

(1)

+

(0.6)

X3

(1)

¬X3

(0)

X4

(0)

¬X4

(1)

X3

(1)

¬X3

(0)

X4

(0)

¬X4

(1)

0.3 0.7

0.6 0.4 0.2 0.8

0.3 0.7 0.9 0.1 0.2 0.8 0.4 0.6

(a) PC

+

(0.0832)

×(0.03707) ×(0.103)

X1

(1)
+

(0.037)

+

(0.103)
¬X1

(1)

×(0.04256) ×(0.02884) ×(0.1215)

+

(0.304)

¬X2

(1)

+

(0.14)

X2

(1)

+

(0.206)

¬X2

(1)

+

(0.59)

Xc
3

(0.99)

¬Xc
3

(0.01)

Xc
4

(0.05)

¬Xc
4

(0.95)

Xc
3

(0.99)

¬Xc
3

(0.01)

Xc
4

(0.05)

¬Xc
4

(0.95)

0.3 0.7

0.6 0.4 0.2 0.8

0.3 0.7 0.9 0.1 0.2 0.8 0.4 0.6

(b) QPC

Figure 1: (a) An example smooth and decomposable PC. The figure also shows value computation for answering the query
pM(X3 = 1, X4 = 0). The values of the leaf, sum, and product nodes are given in parentheses on their bottom, top, and
left, respectively. The value of the root node is the answer to the query. (b) QPC obtained from the PC given in (a) for query
variables {X3, X4}. For simplicity, here, we use an MMAP problem without any evidence. This is because a given evidence
can be incorporated into the PC by appropriately setting the leaf nodes. We also show value computations for the following leaf
initialization: Xc

3 = 0.99,¬Xc
3 = 0.01, Xc

4 = 0.05,¬Xc
4 = 0.95 and all other leaves are set to 1.

ing recursive value computations:

v(n,q) =

{
l(n,q) if n ∈ L∑

m∈ch(n) ω(m,n)v(m,q) if n ∈ S∏
m∈ch(n) v(m,q) if n ∈ P

(1)

Let r denote the root node of M. Then, the probability of
q w.r.t. M, denoted by pM(q) equals v(r,q). Note that if
Q = X, then v(r,x) denotes the probability of the joint
assignment x to all variables in the PC. Thus

v(r,q) =
∑

y∈{0,1}|Y|

v(r, (q,y))

where Y = X \Q and the notation (q,y) denotes the com-
position of the assignments to Q and Y respectively.

Since the recursive value computations require only one
bottom-up pass over the PC, MAR inference is tractable or
linear time in smooth and decomposable PCs.

Example 2. Figure 1(a) shows bottom-up, recursive value
computations for computing the probability of the assign-
ment (X3 = 1, X4 = 0) in our running example. Here, the
leaf nodes ¬X3 and X4 are assigned to 0 and all other leaf
nodes are assigned to 1. The number in parentheses at the
top, left, and bottom of each sum, product and leaf nodes re-
spectively shows the value of the corresponding node. The
value of the root node equals pM(X3 = 1, X4 = 0).

Marginal Maximum-a-Posteriori (MMAP)
Inference in PCs
Given a PC M defined over X, let E ⊆ X and Q ⊆ X
denote the set of evidence and query variables respectively
such that E ∩ Q = ∅. Let H = X \ (Q ∪ E) denote the
set of hidden variables. Given an assignment e to the evi-
dence variables (called evidence), the MMAP task seeks to

find an assignment q to Q such that the probability of the
assignment (e,q) w.r.t. M is maximized. Mathematically,

MMAP(Q, e) = argmax
q

pM(e,q) (2)

=argmax
q

∑
h∈{0,1}|H|

pM(e,q,h) (3)

If H = ∅ (namely Q is the set of non-evidence variables),
then MMAP corresponds to the most probable explanation
(MPE) task. It is known that both MMAP and MPE tasks are
at least NP-hard in smooth and decomposable PCs (Park and
Darwiche 2004; de Campos 2011; Peharz 2015), and even
NP-hard to approximate (Conaty, de Campos, and Mauá
2017; Mei, Jiang, and Tu 2018).

A popular approach to solve the MMAP task in PCs is to
replace the sum (

∑
) operator with the max operator during

bottom-up, recursive value computations and then perform-
ing a second top-down pass to find the assignment (Poon and
Domingos 2011).

A Neural Optimizer for MMAP in PCs
In this section, we introduce a learning-based approach us-
ing deep neural networks (NNs) to approximately solve the
MMAP problem in PCs. Formally, the NN represents a func-
tion fθ(.) that is parameterized by θ, and takes an assign-
ment e over the evidence variables as input and outputs an
assignment q over the query variables. Our goal is to design
generalizable, continuous loss functions for updating the pa-
rameters of the NN such that once learned, at test time, given
an assignment e to the evidence variables as input, the NN
outputs near-optimal solutions to the MMAP problem.

In this paper, we assume that the sets of evidence(
E = {Ei}Ni=1

)
and query

(
Q = {Qj}Mj=1

)
variables are

known a priori and do not change at both training and test

time. We leave as future work the generalization of our ap-
proach that can handle variable length, arbitrarily chosen ev-
idence, and query sets. Also, note that our proposed method
does not depend on the particular NN architecture used, and
we only require that each output node is a continuous quan-
tity in the range [0, 1] and uses a differentiable activation
function (e.g., the sigmoid function).

We can learn the parameters of the given NN either in a
supervised manner or in a self-supervised manner. However,
the supervised approach is impractical, as described below.

In the supervised setting, we assume that we are given
training data D = {⟨e1,q∗

1⟩, . . . , ⟨ed,q∗
d⟩}, where each

input ei is an assignment to the evidence variables, and
each (label) q∗

i is an optimal solution to the correspond-
ing MMAP task, namely q∗

i = MMAP(Q, ei). We then use
supervised loss functions such as the mean-squared-error
(MSE)

∑d
i=1 ∥q∗

i − qc
i)∥22/d and the mean-absolute-error

(MAE)
∑d

i=1 ∥q∗
i − qc

i∥1/d where qc
i is the predicted as-

signment (note that qc
i is continuous), and standard gradient-

based methods to learn the parameters. Although supervised
approaches allow us to use simple-to-implement loss func-
tions, they are impractical if the number of query variables
is large because they require access to the exact solutions to
several intractable MMAP problems2. We therefore propose
to use a self-supervised approach.

A Self-Supervised Loss Function for PCs
In the self-supervised setting, we need access to training
data in the form of assignments to the evidence variables,
i.e., D′ = {e1, . . . , ed}. Since smooth and decomposable
PCs admit perfect sampling, these assignments can be eas-
ily sampled from the PC via top-down AND/OR sampling
(Gogate and Dechter 2012). The latter yields an assignment
x over all the random variables in the PC. Then we simply
project x on the evidence variables E to yield a training ex-
ample e. Because each training example can be generated in
time that scales linearly with the size of the PC, in practice,
our proposed self-supervised approach is likely to have ac-
cess to much larger number of training examples compared
to the supervised approach.

Let qc denote the MMAP assignment predicted by the
NN given evidence e ∈ D′ where qc ∈ [0, 1]M . In MMAP
inference, given e, we want to find an assignment q such
that lnpM(e,q) is maximized, namely, − lnpM(e,q) is
minimized. Thus, a natural loss function that we can use is
− lnpM(e,q). Unfortunately, the NN outputs a continuous
vector qc and as a result pM(e,qc) is not defined. There-
fore, we cannot use − lnpM(e,qc) as a loss function.

One approach to circumvent this issue is to use a threshold
(say 0.5) to convert each continuous quantity in the range
[0,1] to a binary one. A problem with this approach is that
the threshold function is not differentiable.

Therefore, we propose to construct a smooth, differen-
tiable loss function that given qc = (qc1, . . . , q

c
M) ap-

2Note that the training data used to train the NN in the super-
vised setting is different from the training data used to learn the PC.
In particular, in the data used to train the PC, the assignments to the
query variables Q may not be optimal solutions of MMAP(Q, e).

proximates − lnpM(e,q) where q = (q1 = [qc1 >
0.5], . . . , qM = [qcM > 0.5]) and [qci > 0.5] is an indica-
tor function which is 1 if qci > 0.5 and 0 otherwise. The
key idea in our approach is to construct a new PC, which we
call Query-specific PC (QPC) by replacing all binary leaf
nodes associated with the query variables in the original PC,
namely those labeled by Q and ¬Q where Q ∈ Q, with con-
tinuous nodes Qc ∈ [0, 1] and ¬Qc ∈ [0, 1]. Then our pro-
posed loss function is obtained using value computations (at
the root node of the QPC) via a simple modification of the
leaf function of the PC. At a high level, our new leaf func-
tion assigns each leaf node labeled by Qc

j such that Qj ∈ Q
to its corresponding estimate qcj , obtained from the NN and
each leaf node labeled by ¬Qc

j such that Qj ∈ Q to 1− qcj .
Formally, for the QPC, we propose to use leaf function

l′(n, (e,qc)) defined as follows:
1. If the label of n is Qc

j such that Qj ∈ Q then
l′(n, (e,qc)) = qcj .

2. If n is labeled by ¬Qc
j such that Qj ∈ Q then

l′(n, (e,qc)) = 1− qcj .
3. If n is labeled by Ek such that Ek ∈ E and the assign-

ment Ek = 0 is in e then l′(n, (e,qc)) = 0.
4. If n is labeled by ¬Ek such that Ek ∈ E and the assign-

ment Ek = 1 is in e then l′(n, (e,qc)) = 0.
5. If conditions (1)-(4) are not met then l′(n, (e,qc)) = 1.
The value of each node n in the QPC, denoted by
v′(n, (e,qc)) is given by a similar recursion to the one given
in Eq. (1) for PCs, except that the leaf function l(n,q) is re-
placed by the new (continuous) leaf function l′(n, (e,qc)).
Formally, v′(n, (e,qc)) is given by

v′(n, (e,qc))

=

l′(n, (e,qc)) if n ∈ L∑

m∈ch(n) ω(m,n)v′(m, (e,qc)) if n ∈ S∏
m∈ch(n) v

′(n, (e,qc)) if n ∈ P
(4)

Let r denote the root node of M, then we propose to use
− ln v′(r, (e,qc)) as a loss function.
Example 3. Figure 1(b) shows the QPC corresponding to
the PC shown in Figure 1(a). We also show value computa-
tions for the assignment (Xc

3 = 0.99, Xc
4 = 0.05).

Tractable Gradient Computation
Our proposed loss function is smooth and continuous be-
cause by construction, it is a negative logarithm of a multilin-
ear function over qc. Next, we show that the partial deriva-
tive of the function w.r.t. qcj can be computed in linear time in
the size of the QPC3. More specifically, in order to compute
the partial derivative of QPC with respect to qc

j , we simply
have to use a new leaf function which is identical to l′ except
that if the label of a leaf node n is Qc

j then we set its value
to 1 (instead of qcj) and if it is ¬Qc

j then we set its value −1
(instead of 1 − qcj). We then perform bottom-up recursive

3Recall that qcj is an output node of the NN and therefore back-
propagation over the NN can be performed in time that scales lin-
early with the size of the NN and the QPC

value computations over the QPC and the value of the root
node is the partial derivative of the QPC with respect to qc

j .
In summary, it is straight-forward to show that:

Proposition 1. The gradient of the loss function
− ln v′(r, (e,qc)) w.r.t. qc

j can be computed in time
and space that scales linearly with the size of M.

Example 4. The partial derivative of the QPC given in fig-
ure 1(b) w.r.t. xc

3 given (Xc
3 = 0.99, Xc

4 = 0.05) can be
obtained by setting the leaf nodes Xc

3 to 1 and ¬Xc
3 to −1,

assigning all other leaves to the values shown in Figure 1(b)
and then performing value computations. After the value
computation phase, the value of the root node will equal the
partial derivative of the QPC w.r.t. xc

3.

Improving the Loss Function
As mentioned earlier, our proposed loss function is a contin-
uous approximation of the discrete function − ln v(r, (e,q))
where q = (q1 = [qc1 > 0.5], . . . , qM = [qcM > 0.5]) and
the difference between the two is minimized iff q = qc.
Moreover, since the set of continuous assignments includes
the discrete assignments, it follows that:

min
qc

{− ln v′(r, (e,qc))} ≤ min
q

{− ln v(r, (e,q))} (5)

Since the right-hand side of the inequality given in (5) solves
the MMAP task, we can improve our loss function by tight-
ening the lower bound. This can be accomplished using
an entropy-based penalty, controlled by a hyper-parameter
α > 0, yielding the loss function

ℓ(qc) = − ln v′(r, (e,qc))−

α

M∑
j=1

qcj log(q
c
j) + (1− qcj) log(1− qcj) (6)

The second term in the expression given above is minimized
when each qcj is closer to 0 or 1 and is maximized when
qcj = 0.5. Therefore, it encourages 0/1 (discrete) solutions.
The hyperparameter α controls the magnitude of the penalty.
When α = 0, the above expression finds an assignment
based on the continuous approximation − ln v′(r, (e,qc)).
On the other hand, when α = ∞ then only discrete so-
lutions are possible yielding a non-smooth loss function.
α thus helps us trade the smoothness of our proposed loss
function with its distance to the true loss.

Experiments
In this section, we describe and analyze the results of our
comprehensive experimental evaluation for assessing the
performance of our novel Self-Supervised learning based
MMAP solver for PCs, referred to as SSMP hereafter. We
begin by describing our experimental setup including com-
peting methods, evaluation criteria, as well as NN architec-
tures, datasets, and PCs used in our study.

Competing Methods
We use three polytime baseline methods from the PC and
probabilistic graphical models literature (Park and Darwiche

2004; Poon and Domingos 2011). We also compared the
impact of using the solutions computed by the three base-
line schemes as well our method SSMP as initial state for
stochastic hill climbing search.
Baseline 1: MAX Approximation (Max). In this scheme
(Poon and Domingos 2011), the MMAP assignment is de-
rived by substituting sum nodes with max nodes. During the
upward pass, a max node produces the maximum weighted
value from its children instead of their weighted sum. Sub-
sequently, the downward pass begins from the root and it-
eratively selects the highest-valued child of a max node (or
one of them), along with all children of a product node.
Baseline 2: Maximum Likelihood Approximation (ML)
(Park and Darwiche 2004) For each variable Q ∈ Q, we
first compute the marginal distribution pM(Q|e) and then
set Q to argmaxj∈{0,1} pM(Q = j|e).
Baseline 3: Sequential Approximation (Seq) In this
scheme (Park and Darwiche 2004), we assign the query
variables one by one until no query variables remain unas-
signed. At each step, we choose an unassigned query vari-
able Qj ∈ Q that maximizes the probability pM(qj |e,y)
for one of its values qj and assign it to qj where y represents
the assignment to the previously considered query variables.
Stochastic Hill Climbing Search. We used the three base-
lines and our SSMP method as the initial state in stochas-
tic hill climbing search for MMAP inference described in
(Park and Darwiche 2004). The primary goal of this ex-
periment is to assess whether our scheme can assist local
search-based anytime methods in reaching better solutions
than other heuristic methods for initialization. In our exper-
iments, we ran stochastic hill climbing for 100 iterations for
each MMAP problem.

Evaluation Criteria
We evaluated the performance of the competing schemes
along two dimensions: log-likelihood scores and inference
times. Given evidence e and query answer q, the log-
likelihood score is given by ln pM(e,q).

Datasets and Probabilistic Circuits
We use twenty-two widely used binary datasets from the
tractable probabilistic models’ literature (Lowd and Davis
2010; Haaren and Davis 2012; Larochelle and Murray 2011;
Bekker et al. 2015) (we call them TPM datasets) as well
as the binarized MNIST (Salakhutdinov and Murray 2008),
EMNIST (Cohen et al. 2017) and CIFAR-10 (Krizhevsky,
Nair, and Hinton 2009) datasets. We used the DeeProb-kit
library (Loconte and Gala 2022) to learn a sum-product net-
work (our choice of PC) for each dataset. The number of
nodes in these learned PCs ranges from 46 to 22027.

For each PC and each test example in the 22 TPM
datasets, we generated two types of MMAP instances: MPE
instances in which H is empty and MMAP instances in
which H is not empty. We define query ratio, denoted by qr,
as the fraction of variables that are part of the query set. For
MPE, we selected qr from {0.1, 0.3, 0.5, 0.6, 0.7, 0.8, 0.9},
and for MMAP, we replaced 0.9 with 0.4 to avoid small H
and E. For generating MMAP instances, we used 50% of

Initial Hill Climbing Search
MPE MMAP MPE MMAP

Max SSMP ML Seq Max SSMP ML Seq Max SSMP ML Seq Max SSMP ML Seq
Max 0 64 33 14 0 46 23 10 0 40 13 9 0 27 10 16

SSMP 88 0 96 77 97 0 102 82 93 0 99 87 98 0 100 86
ML 6 49 0 15 3 34 0 10 19 37 0 14 12 26 0 17
Seq 105 63 105 0 117 53 117 0 85 44 82 0 89 39 90 0

Table 1: Contingency tables for competing methods across MPE and MMAP Problems, including initial and Hill Climbing
Search comparisons. Highlighted values represent results for SSMP.

the remaining variables as evidence variables (and for MPE
instances all remaining variables are evidence variables).

For the MNIST, EMNIST, and CIFAR-10 datasets, we
used qr = 0.7 and generated MPE instances only. More
specifically, we used the top 30% portion of the image as ev-
idence, leaving the bottom 70% portion as query variables.
Also, in order to reduce the training time for PCs, note that
for these datasets, we learned a PC for each class, yielding a
total of ten PCs for each dataset.

Neural Network Optimizers
For each PC and query ratio combination, we trained a cor-
responding neural network (NN) using the loss function de-
scribed in the previous section. Because we have 22 TPM
datasets and 7 query ratios for them, we trained 154 NNs for
the MPE task and 154 for the MMAP task. For the CIFAR-
10, MNIST and EMNIST datasets, we trained 10 NNs, one
for each PC (recall that we learned a PC for each class).

Because our learning method does not depend on the spe-
cific choice of neural network architectures, we use a fixed
neural network architecture across all experiments: fully
connected with four hidden layers having 128, 256, 512,
and 1024 nodes respectively. We used ReLU activation in
the hidden layers, sigmoid in the output layer, dropout for
regularization (Srivastava et al. 2014) and Adam optimizer
(Kingma and Ba 2017) with a standard learning rate sched-
uler for 50 epochs. All NNs were trained using PyTorch
(Paszke et al. 2019) on a single NVIDIA A40 GPU. We se-
lect a value for the hyperparameter α used in our loss func-
tion (see equation (6)) via 5-fold cross validation.

Results on the TPM Datasets
We summarize our results for the competing schemes (3
baselines and SSMP) on the 22 TPM datasets using the first
two contingency tables given in Table 1, one for MPE and
one for MMAP. Detailed results are provided in the supple-
mentary material. Recall that we generated 154 test datasets
each for MPE and MMAP (22 PCs × 7 qr values). In all
contingency tables, the number in the cell (i, j) equals the
number of times (out of 154) that the scheme in the i-th row
was better in terms of average log-likelihood score than the
scheme in the j-th column. The difference between 154 and
the sum of the numbers in the cells (i, j) and (j, i) equals the
number of times the scheme in the i-th row and j-th column
had identical log-likelihood scores.

From the MPE contingency table given in Table 1, we
observe that SSMP is superior to Max, ML, and Seq ap-
proximations. The Seq approximation is slightly better than

the Max approximation, and ML is the worst-performing
scheme. For the harder MMAP task, we see a similar order-
ing among the competing schemes (see Table 1) with SSMP
dominating other schemes. In particular, SSMP outperforms
the Max and ML approximations in almost two-thirds of the
cases and the Seq method in more than half of the cases.

We also investigate the effectiveness of SSMP and other
baseline approaches when employed as initialization strate-
gies for Hill Climbing Search. These findings are illustrated
in the last two contingency tables given in Table 1. Notably,
SSMP outperforms all other baseline approaches in nearly
two-thirds of the experiments for both MPE and MMAP
tasks. These results demonstrate that SSMP can serve as an
effective initialization technique for anytime local search-
based algorithms.

0.1 0.3 0.5 0.6 0.7 0.8 0.9

Query Ratio

nltcs
msnbc

kdd
plants
jester

bnetflix
baudio

accidents
mushrooms

connect4
tretail

rcv1
pumsb

dna
kosarek
tmovie

book
cwebkb

cr52
c20ng

mvreview
bbc

20

15

10

5

0

5

10

15

20

(a) MPE

0.1 0.3 0.4 0.5 0.6 0.7 0.8

Query Ratio

nltcs
msnbc

kdd
plants
jester

bnetflix
baudio

accidents
mushrooms

connect4
tretail

rcv1
pumsb

dna
kosarek
tmovie

book
cwebkb

cr52
c20ng

mvreview
bbc

20

15

10

5

0

5

10

15

20

(b) MMAP

Figure 2: Heat map showing the % difference in log-
likelihood scores between SSMP and Max approximation.
Blue represents Max’s superiority (negative values) and red
indicates SSMP better performance (positive values).

In Figure 2, via a heat-map representation, we show a
more detailed performance comparison between SSMP and
the Max approximation, which is a widely used baseline for
MPE and MMAP inference in PCs. In the heat-map repre-
sentation, the y-axis represents the datasets (ordered by the
number of variables), while the x-axis shows the query ra-
tio. The values in each cell represent the percentage differ-
ence between the mean log-likelihood scores of SSMP and

CIFAR MNIST EMNIST
Max SSMP ML Seq Max SSMP ML Seq Max SSMP ML Seq

Max 0 0 0 2 0 1 0 1 0 1 0 5
SSMP 9 0 9 9 9 0 9 9 7 0 7 7
ML 0 0 0 2 0 1 0 1 0 1 0 5
Seq 7 0 7 0 9 1 9 0 3 1 3 0

Table 2: Contingency tables comparing competing methods for MPE on CIFAR, MNIST and EMNIST datasets. Highlighted
values represent results for SSMP.

the Max approximation. Formally, let llssmp and llmax de-
note the mean LL scores of SSMP and Max approximation
respectively, then the percentage difference is given by

%Diff. =
llssmp − llmax

|llmax|
× 100 (7)

From the heatmap for MPE given in Figure 2(a), we ob-
serve that SSMP is competitive with the Max approximation
when the size of the query set is small. However, as the num-
ber of query variables increases, signaling a more challeng-
ing problem, SSMP consistently outperforms or has similar
performance to the Max method across all datasets, except
for accidents, pumsb-star, and book.

The heatmaps for MMAP are illustrated in Figure 2(b).
We see a similar trend as the one for MPE; SSMP remains
competitive with the Max approximation, particularly when
the number of query variables is small. While SSMP outper-
forms (with some exceptions) the Max approximation when
the number of query variables is large.

Finally, we present inference times in the supplement. On
average SSMP requires in the order of 7-10 micro-seconds
for MMAP inference on an A40 GPU. The Max approxi-
mation takes 7 milli-seconds (namely, SSMP is almost 1000
times faster). In comparison, as expected, the Seq and ML
approximations are quite slow, requiring roughly 400 to 600
milliseconds to answer MPE and MMAP queries. In the case
of our proposed method (SSMP), during the inference pro-
cess, the size of the SPN holds no relevance; its time com-
plexity is linear in the size of the neural network. On the
contrary, for the alternative methods, the inference time is
intricately dependent on the size of the SPN.

Results on the CIFAR-10 Dataset
We binarized the CIFAR-10 dataset using a variational au-
toencoder having 512 bits. We then learned a PC for each of
the 10 classes; namely, we learned a PC conditioned on the
class variable. As mentioned earlier, we randomly set 70%
of the variables as query variables. The contingency table for
CIFAR-10 is shown in Table 2. We observe that SSMP dom-
inates all competing methods while the Seq approximation
is the second-best performing scheme (although note that
Seq is computationally expensive).

Results on the MNIST and EMNIST Datasets
Finally, we evaluated SSMP on the image completion task
using the Binarized MNIST (Salakhutdinov and Murray
2008) and the EMNIST datasets (Cohen et al. 2017). As
mentioned earlier, we used the top 30% of the image as ev-
idence and estimated the bottom 70% by solving the MPE

task over PCs using various competing methods. The con-
tingency tables for the MNIST and EMNIST datasets are
shown in Table 2. We observe that on the MNIST dataset,
SSMP is better than all competing schemes on 9 out of the
10 PCs, while it is inferior to all on one of them. On the EM-
NIST dataset, SSMP is better than all competing schemes on
7 out of the 10 PCs and inferior to all on one of the PCs.
Detailed results on the image datasets, including qualitative
comparisons, are provided in the supplement.

In summary, we find that, on average, our proposed
method (SSMP) is better than other baseline MPE/MMAP
approximations in terms of log-likelihood score. Moreover,
it is substantially better than the baseline methods when the
number of query variables is large. Also, once learned from
data, it is also significantly faster than competing schemes.

Conclusion and Future Work
In this paper, we introduced a novel self-supervised learning
algorithm for solving MMAP queries in PCs. Our contribu-
tions comprise a neural network approximator and a self-
supervised loss function which leverages the tractability of
PCs for achieving scalability. Notably, our method employs
minimal hyperparameters, requiring only one in the discrete
case. We conducted a comprehensive empirical evaluation
across various benchmarks; specifically, we experimented
with 22 binary datasets used in tractable probabilistic mod-
els community and three classic image datasets, MNIST,
EMNIST, and CIFAR-10. We compared our proposed neural
approximator to polytime baseline techniques and observed
that it is superior to the baseline methods in terms of log-
likelihood scores and is significantly better in terms of com-
putational efficiency. Additionally, we evaluated how our
approach performs when used as an initialization scheme
in stochastic hill climbing (local) search and found that it
improves the quality of solutions output by anytime local
search schemes. Our empirical results clearly demonstrated
the efficacy of our approach in both accuracy and speed.

Future work includes compiling PCs to neural net-
works for answering more complex queries that involve
constrained optimization; developing sophisticated self-
supervised loss functions; learning better NN architecture
for the given PC; generalizing our approach to arbitrarily
chosen query and evidence subsets; etc.

Acknowledgements
This work was supported in part by the DARPA
Perceptually-Enabled Task Guidance (PTG) Program under
contract number HR00112220005, by the DARPA Assured

Neuro Symbolic Learning and Reasoning (ANSR) Program
under contract number HR001122S0039, by the National
Science Foundation grant IIS-1652835 and by the AFOSR
award FA9550-23-1-0239.

References
Bekker, J.; Davis, J.; Choi, A.; Darwiche, A.; and Van den
Broeck, G. 2015. Tractable Learning for Complex Probabil-
ity Queries. In Cortes, C.; Lawrence, N.; Lee, D.; Sugiyama,
M.; and Garnett, R., eds., Advances in Neural Information
Processing Systems, volume 28. Curran Associates, Inc.
Bioucas-Dias, J.; and Figueiredo, M. 2016. Bayesian Im-
age Segmentation Using Hidden Fields: Supervised, Unsu-
pervised, and Semi-Supervised Formulations. In 2016 24th
European Signal Processing Conference (EUSIPCO), 523–
527.
Choi, Y.; Friedman, T.; and Van den Broeck, G. 2022. Solv-
ing marginal map exactly by probabilistic circuit transfor-
mations. In International Conference on Artificial Intelli-
gence and Statistics, 10196–10208. PMLR.
Choi, Y.; Vergari, A.; and Van den Broeck, G. 2020. Proba-
bilistic Circuits: A Unifying Framework for Tractable Prob-
abilistic Models. Technical report, University of California,
Los Angeles.
Cohen, G.; Afshar, S.; Tapson, J.; and van Schaik, A. 2017.
EMNIST: An Extension of MNIST to Handwritten Letters.
arxiv:1702.05373.
Conaty, D.; de Campos, C. P.; and Mauá, D. D. 2017. Ap-
proximation Complexity of Maximum A Posteriori Infer-
ence in Sum-Product Networks. In Elidan, G.; Kersting, K.;
and Ihler, A., eds., Proceedings of the Thirty-Third Confer-
ence on Uncertainty in Artificial Intelligence (UAI). AUAI
Press.
Cui, Z.; Wang, H.; Gao, T.; Talamadupula, K.; and Ji, Q.
2022. Variational Message Passing Neural Network for
Maximum-A-Posteriori (MAP) Inference. In Cussens, J.;
and Zhang, K., eds., Uncertainty in Artificial Intelligence,
Proceedings of the Thirty-Eighth Conference on Uncertainty
in Artificial Intelligence, UAI 2022, 1-5 August 2022, Eind-
hoven, the Netherlands, volume 180 of Proceedings of Ma-
chine Learning Research, 464–474. PMLR.
Darwiche, A. 2003. A differential approach to inference
in Bayesian networks. Journal of the ACM (JACM), 50(3):
280–305.
de Campos, C. P. 2011. New Complexity Results for MAP in
Bayesian Networks. IJCAI International Joint Conference
on Artificial Intelligence, 2100–2106.
Dechter, R.; and Mateescu, R. 2007. AND/OR search spaces
for graphical models. Artificial intelligence, 171(2-3): 73–
106.
Donti, P. L.; Rolnick, D.; and Kolter, J. Z. 2020. DC3: A
Learning Method for Optimization with Hard Constraints.
In International Conference on Learning Representations.
Fioretto, F.; Mak, T. W. K.; and Hentenryck, P. V. 2020. Pre-
dicting AC Optimal Power Flows: Combining Deep Learn-
ing and Lagrangian Dual Methods. Proceedings of the AAAI
Conference on Artificial Intelligence, 34(01): 630–637.

Gogate, V.; and Dechter, R. 2012. Importance sampling-
based estimation over AND/OR search spaces for graphical
models. Artificial Intelligence, 184-185: 38–77.
Haaren, J. V.; and Davis, J. 2012. Markov Network Structure
Learning: A Randomized Feature Generation Approach.
Proceedings of the AAAI Conference on Artificial Intelli-
gence, 26(1): 1148–1154.
Kingma, D. P.; and Ba, J. 2017. Adam: A Method for
Stochastic Optimization. arxiv:1412.6980.
Kisa, D.; Van den Broeck, G.; Choi, A.; and Darwiche, A.
2014. Probabilistic sentential decision diagrams. In Four-
teenth International Conference on the Principles of Knowl-
edge Representation and Reasoning.
Kiselev, I.; and Poupart, P. 2014. POMDP Planning by
Marginal-MAP Probabilistic Inference in Generative Mod-
els. In Proceedings of the 2014 AAMAS Workshop on Adap-
tive Learning Agents.
Krizhevsky, A.; Nair, V.; and Hinton, G. 2009. Learning
multiple layers of features from tiny images. Technical re-
port, Technical Report, University of Toronto.
Larochelle, H.; and Murray, I. 2011. The Neural Autore-
gressive Distribution Estimator. In Gordon, G.; Dunson, D.;
and Dudı́k, M., eds., Proceedings of the Fourteenth Inter-
national Conference on Artificial Intelligence and Statistics,
volume 15 of Proceedings of Machine Learning Research,
29–37. Fort Lauderdale, FL, USA: PMLR.
Lee, J.; Marinescu, R.; and Dechter, R. 2014. Applying
Marginal MAP Search to Probabilistic Conformant Plan-
ning: Initial Results. In Statistical Relational Artificial In-
telligence, Papers from the 2014 AAAI Workshop, Québec
City, Québec, Canada, July 27, 2014, volume WS-14-13 of
AAAI Technical Report. AAAI.
Li, K.; and Malik, J. 2016. Learning to Optimize.
arXiv:1606.01885.
Loconte, L.; and Gala, G. 2022. DeeProb-kit: a Python Li-
brary for Deep Probabilistic Modelling.
Lowd, D.; and Davis, J. 2010. Learning Markov Network
Structure with Decision Trees. In 2010 IEEE International
Conference on Data Mining, 334–343. IEEE. ISBN 978-1-
4244-9131-5.
Mauá, D. D.; Reis, H. R.; Katague, G. P.; and Antonucci,
A. 2020. Two reformulation approaches to maximum-a-
posteriori inference in sum-product networks. In Interna-
tional Conference on Probabilistic Graphical Models, 293–
304. PMLR.
Mei, J.; Jiang, Y.; and Tu, K. 2018. Maximum a posteriori
inference in sum-product networks. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 32.
Park, J. D.; and Darwiche, A. 2004. Complexity Results and
Approximation Strategies for MAP Explanations. J. Artif.
Int. Res., 21(1): 101–133.
Park, S.; and Hentenryck, P. V. 2023. Self-Supervised
Primal-Dual Learning for Constrained Optimization. Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
37(4): 4052–4060.

Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.;
Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.;
et al. 2019. Pytorch: An imperative style, high-performance
deep learning library. Advances in neural information pro-
cessing systems, 32.
Peharz, R. 2015. Foundations of sum-product networks for
probabilistic modeling. Ph.D. thesis, PhD thesis, Medical
University of Graz.
Peharz, R.; Gens, R.; Pernkopf, F.; and Domingos, P. 2016.
On the latent variable interpretation in sum-product net-
works. IEEE transactions on pattern analysis and machine
intelligence, 39(10): 2030–2044.
Ping, W.; Liu, Q.; and Ihler, A. T. 2015. Decomposition
Bounds for Marginal MAP. In Cortes, C.; Lawrence, N.;
Lee, D.; Sugiyama, M.; and Garnett, R., eds., Advances in
Neural Information Processing Systems, volume 28. Curran
Associates, Inc.
Poon, H.; and Domingos, P. 2011. Sum-Product Networks:
A New Deep Architecture. In Proceedings of the Twenty-
Seventh Conference on Uncertainty in Artificial Intelligence,
337–346. AUAI Press.
Rahman, T.; and Gogate, V. 2016a. Learning Ensembles of
Cutset Networks. Proceedings of the AAAI Conference on
Artificial Intelligence, 30(1).
Rahman, T.; and Gogate, V. 2016b. Merging Strategies for
Sum-Product Networks: From Trees to Graphs. In Proceed-
ings of the Thirty-Second Conference Conference on Uncer-
tainty in Artificial Intelligence, 617–626.
Rahman, T.; Jin, S.; and Gogate, V. 2019. Look ma, no latent
variables: Accurate cutset networks via compilation. In In-
ternational Conference on Machine Learning, 5311–5320.
PMLR.
Rahman, T.; Kothalkar, P.; and Gogate, V. 2014. Cutset net-
works: A simple, tractable, and scalable approach for im-
proving the accuracy of chow-liu trees. In Machine Learning
and Knowledge Discovery in Databases: European Confer-
ence, ECML PKDD 2014, Nancy, France, September 15-19,
2014. Proceedings, Part II 14, 630–645. Springer.
Salakhutdinov, R.; and Murray, I. 2008. On the quantita-
tive analysis of deep belief networks. In Proceedings of the
25th international conference on Machine learning, 872–
879. ACM.
Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; and
Salakhutdinov, R. 2014. Dropout: A Simple Way to Pre-
vent Neural Networks from Overfitting. Journal of Machine
Learning Research, 15(56): 1929–1958.
Vergari, A.; Choi, Y.; Liu, A.; Teso, S.; and Van den Broeck,
G. 2021. A Compositional Atlas of Tractable Circuit Oper-
ations for Probabilistic Inference. In Ranzato, M.; Beygelz-
imer, A.; Dauphin, Y.; Liang, P.; and Vaughan, J. W., eds.,
Advances in Neural Information Processing Systems, vol-
ume 34, 13189–13201. Curran Associates, Inc.
Yoon, K.; Liao, R.; Xiong, Y.; Zhang, L.; Fetaya, E.; Urta-
sun, R.; Zemel, R.; and Pitkow, X. 2019. Inference in proba-
bilistic graphical models by graph neural networks. In 2019
53rd Asilomar Conference on Signals, Systems, and Com-
puters, 868–875. IEEE.

Zamzam, A. S.; and Baker, K. 2020. Learning Optimal Solu-
tions for Extremely Fast AC Optimal Power Flow. In 2020
IEEE International Conference on Communications, Con-
trol, and Computing Technologies for Smart Grids (Smart-
GridComm), 1–6.

