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ABSTRACT

Probabilistic circuits (PCs) such as sum-product networks efficiently represent large multi-variate
probability distributions. They are preferred in practice over other probabilistic representations, such
as Bayesian and Markov networks, because PCs can solve marginal inference (MAR) tasks in time
that scales linearly in the size of the network. Unfortunately, the most probable explanation (MPE)
task and its generalization, the marginal maximum-a-posteriori (MMAP) inference task remain
NP-hard in these models. Inspired by the recent work on using neural networks for generating
near-optimal solutions to optimization problems such as integer linear programming, we propose
an approach that uses neural networks to approximate MMAP inference in PCs. The key idea in
our approach is to approximate the cost of an assignment to the query variables using a continuous
multilinear function and then use the latter as a loss function. The two main benefits of our new
method are that it is self-supervised, and after the neural network is learned, it requires only linear
time to output a solution. We evaluate our new approach on several benchmark datasets and show that
it outperforms three competing linear time approximations: max-product inference, max-marginal
inference, and sequential estimation, which are used in practice to solve MMAP tasks in PCs.

1 Introduction

Probabilistic circuits (PCs) Choi et al. [2020] such as sum-product networks (SPNs) Poon and Domingos [2011],
arithmetic circuits Darwiche [2003], AND/OR graphs Dechter and Mateescu [2007], cutset networks Rahman et al.
[2014], and probabilistic sentential decision diagrams Kisa et al. [2014] represent a class of tractable probabilistic
models which are often used in practice to compactly encode a large multi-dimensional joint probability distribution.
Even though all of these models admit linear time computation of marginal probabilities (MAR task), only some of
them Vergari et al. [2021], Peharz [2015], specifically those without any latent variables or having specific structural
properties, e.g., cutset networks, selective SPNs Peharz et al. [2016], AND/OR graphs having small contexts, etc., admit
tractable most probable explanation (MPE) inference1.

However, none of these expressive PCs can efficiently solve the marginal maximum-a-posteriori (MMAP) task Peharz
[2015], Vergari et al. [2021], a task that combines MAR and MPE inference. More specifically, the distinction between
MPE and MMAP tasks is that, given observations over a subset of variables (evidence), the MPE task aims to find
the most likely assignment to all the non-evidence variables. In contrast, in the MMAP task, the goal is to find the
most likely assignment to a subset of non-evidence variables known as the query variables, while marginalizing out
non-evidence variables that are not part of the query. The MMAP problem has numerous real-world applications,
especially in health care, natural language processing, computer vision, linkage analysis and diagnosis where hidden
variables are present and need to be marginalized out Bioucas-Dias and Figueiredo [2016], Kiselev and Poupart [2014],
Lee et al. [2014], Ping et al. [2015].

1The MPE inference task is also called full maximum-a-posteriori (full MAP) inference in literature. In this paper, we adopt the
convention of calling it MPE.
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In terms of computational complexity, both MPE and MMAP tasks are at least NP-hard in SPNs, a popular class of
PCs Peharz [2015], Conaty et al. [2017]. Moreover, it is also NP-hard to approximate MMAP in SPNs to 2n

δ

for fixed
0 ≤ δ < 1, where n is the input size Conaty et al. [2017], Mei et al. [2018]. It is also known that the MMAP task is
much harder than the MPE task and is NP-hard even on models such as cutset networks and AND/OR graphs that admit
linear time MPE inference Park and Darwiche [2004], de Campos [2011].

To date, both exact and approximate methods have been proposed in literature for solving the MMAP task in PCs.
Notable exact methods include branch-and-bound search Mei et al. [2018], reformulation approaches which encode the
MMAP task as other combinatorial optimization problems with widely available solvers Mauá et al. [2020] and circuit
transformation and pruning techniques Choi et al. [2022]. These methods can be quite slow in practice and are not
applicable when fast, real-time inference is desired. As a result, approximate approaches that require only a few passes
over the PC are often used in practice. A popular approximate approach is to compute an MPE solution over both the
query and unobserved variables and then project the MPE solution over the query variables Poon and Domingos [2011],
Rahman et al. [2019]. Although this approach can provide fast answers at query time, it often yields MMAP solutions
that are far from optimal.

In this paper, we propose to address the limitations of existing approximate methods for MMAP inference in PCs by
using neural networks (NNs), leveraging recent work in the learning to optimize literature Li and Malik [2016], Fioretto
et al. [2020], Donti et al. [2020], Zamzam and Baker [2020], Park and Hentenryck [2023]. In particular, several recent
works have shown promising results in using NNs to solve both constrained and unconstrained optimization problems
(see Park and Hentenryck [2023] and the references therein).

The high-level idea in these works is the following: given data, train NNs, either in a supervised or self-supervised
manner, and then use them at test time to predict high-quality, near-optimal solutions to future optimization problems.
A number of reasons have motivated this idea of learning to optimize using NNs: 1) NNs are good at approximating
complex functions (distributions), 2) once trained, they can be faster at answering queries than search-based approaches,
and 3) with ample data, NNs can learn accurate mappings of inputs to corresponding outputs. This has led researchers to
employ NNs to approximately answer probabilistic inference queries such as MAR and MPE in Bayesian and Markov
networks Yoon et al. [2019], Cui et al. [2022]. To the best of our knowledge, there is no prior work on solving MMAP
in BNs, MNs, or PCs using NNs.

This paper makes the following contributions. First, we propose to learn a neural network (NN) approximator for
solving the MMAP task in PCs. Second, by leveraging the tractability of PCs, we devise a loss function whose gradient
can be computed in time that scales linearly in the size of the PC, allowing fast gradient-based algorithms for learning
NNs. Third, our method trains an NN in a self-supervised manner without having to rely on pre-computed solutions to
arbitrary MMAP problems, thus circumventing the need to solve intractable MMAP problems in practice. Fourth, we
demonstrate via a large-scale experimental evaluation that our proposed NN approximator yields higher quality MMAP
solutions as compared to existing approximate schemes.

2 Preliminaries

We use upper case letters (e.g., X) to denote random variables and corresponding lower case letters (e.g., x) to denote
an assignment of a value to a variable. We use bold upper case letters (e.g., X) to denote a set of random variables and
corresponding bold lower case letters (e.g., x) to denote an assignment of values to all variables in the set. Given an
assignment x to all variables in X and a variable Y ∈ X, let xY denote the projection of x on Y . We assume that all
random variables take values from the set {0, 1}; although note that it is easy to extend our method to multi-valued
variables.

2.1 Probabilistic Circuits

A probabilistic circuit (PC) M Choi et al. [2020] defined over a set of variables X represents a joint probability
distribution over X using a rooted directed acyclic graph. The graph consists of three types of nodes: internal sum nodes
that are labeled by +, internal product nodes that are labeled by ×, and leaf nodes that are labeled by either X or ¬X
where X ∈ X. Sum nodes represent conditioning, and an edge into a sum node n from its child node m is labeled by a
real number ω(m,n) > 0. Given an internal node (either a sum or product node) n, let ch(n) denote the set of children
of n. We assume that each sum node n is normalized and satisfies the following property:

∑
m∈ch(n) ω(m,n) = 1.

In this paper, we focus on a class of PCs which are smooth and decomposable Choi et al. [2020], Vergari et al. [2021].
Examples of such PCs include sum-product networks Poon and Domingos [2011], Rahman and Gogate [2016a],
mixtures of cutset networks Rahman et al. [2014], Rahman and Gogate [2016b], and arithmetic circuits obtained
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Figure 1: (a) An example smooth and decomposable PC. The figure also shows value computation for answering the
query pM(X3 = 1, X4 = 0). The values of the leaf, sum, and product nodes are given in parentheses on their bottom,
top, and left, respectively. The value of the root node is the answer to the query. (b) QPC obtained from the PC given
in (a) for query variables {X3, X4}. For simplicity, here, we use an MMAP problem without any evidence. This is
because a given evidence can be incorporated into the PC by appropriately setting the leaf nodes. We also show value
computations for the following leaf initialization: Xc

3 = 0.99,¬Xc
3 = 0.01, Xc

4 = 0.05,¬Xc
4 = 0.95 and all other

leaves are set to 1.

by compiling probabilistic graphical models Darwiche [2003]. These PCs admit tractable marginal inference, a key
property that we leverage in our proposed method.
Definition 1. We say that a sum or a product node n is defined over a variable X if there exists a directed path from n
to a leaf node labeled either by X or ¬X . A PC is smooth if each sum node is such that its children are defined over
the same set of variables. A PC is decomposable if each product node is such that its children are defined over disjoint
subsets of variables.
Example 1. Figure 1(a) shows a smooth and decomposable probabilistic circuit defined over X = {X1, . . . , X4}.

2.2 Marginal Inference in PCs

Next, we describe how to compute the probability of an assignment to a subset of variables in a smooth and decomposable
PC. This task is called the marginal inference (MAR) task. We begin by describing some additional notation.

Given a PC M defined over X, let S, P and L denote the set of sum, product and leaf nodes of M respectively. Let
Q ⊆ X. Given a node m and an assignment q, let v(m,q) denote the value of m given q. Given a leaf node n, let
var(n) denote the variable associated with n and let l(n,q) be a function, which we call leaf function, that is defined
as follows. l(n,q) equals 0 if any of the following two conditions are satisfied: (1) the label of n is Q where Q ∈ Q
and q contains the assignment Q = 0; and (2) if the label of n is ¬Q and q contains the assignment Q = 1. Otherwise,
it is equal to 1. Intuitively, the leaf function assigns all leaf nodes that are inconsistent with the assignment q to 0 and
the remaining nodes, namely those that are consistent with q and those that are not part of the query to 1.

Under this notation, and given a leaf function l(n,q), the marginal probability of any assignment q w.r.t M, and
denoted by pM(q) can be computed by performing the following recursive value computations:

v(n,q) =

{
l(n,q) if n ∈ L∑

m∈ch(n) ω(m,n)v(m,q) if n ∈ S∏
m∈ch(n) v(m,q) if n ∈ P

(1)

Let r denote the root node of M. Then, the probability of q w.r.t. M, denoted by pM(q) equals v(r,q). Note that if
Q = X, then v(r,x) denotes the probability of the joint assignment x to all variables in the PC. Thus

v(r,q) =
∑

y∈{0,1}|Y|

v(r, (q,y))

where Y = X \Q and the notation (q,y) denotes the composition of the assignments to Q and Y respectively.

Since the recursive value computations require only one bottom-up pass over the PC, MAR inference is tractable or linear
time in smooth and decomposable PCs.
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Example 2. Figure 1(a) shows bottom-up, recursive value computations for computing the probability of the assignment
(X3 = 1, X4 = 0) in our running example. Here, the leaf nodes ¬X3 and X4 are assigned to 0 and all other leaf
nodes are assigned to 1. The number in parentheses at the top, left, and bottom of each sum, product and leaf nodes
respectively shows the value of the corresponding node. The value of the root node equals pM(X3 = 1, X4 = 0).

2.3 Marginal Maximum-a-Posteriori (MMAP) Inference in PCs

Given a PC M defined over X, let E ⊆ X and Q ⊆ X denote the set of evidence and query variables respectively
such that E ∩ Q = ∅. Let H = X \ (Q ∪ E) denote the set of hidden variables. Given an assignment e to the
evidence variables (called evidence), the MMAP task seeks to find an assignment q to Q such that the probability of
the assignment (e,q) w.r.t. M is maximized. Mathematically,

MMAP(Q, e) = argmax
q

pM(e,q) (2)

=argmax
q

∑
h∈{0,1}|H|

pM(e,q,h) (3)

If H = ∅ (namely Q is the set of non-evidence variables), then MMAP corresponds to the most probable explanation
(MPE) task. It is known that both MMAP and MPE tasks are at least NP-hard in smooth and decomposable PCs Park
and Darwiche [2004], de Campos [2011], Peharz [2015], and even NP-hard to approximate Conaty et al. [2017], Mei
et al. [2018].

A popular approach to solve the MMAP task in PCs is to replace the sum (
∑

) operator with the max operator during
bottom-up, recursive value computations and then performing a second top-down pass to find the assignment Poon and
Domingos [2011].

3 A Neural Optimizer for MMAP in PCs

In this section, we introduce a learning-based approach using deep neural networks (NNs) to approximately solve
the MMAP problem in PCs. Formally, the NN represents a function fθ(.) that is parameterized by θ, and takes an
assignment e over the evidence variables as input and outputs an assignment q over the query variables. Our goal is to
design generalizable, continuous loss functions for updating the parameters of the NN such that once learned, at test
time, given an assignment e to the evidence variables as input, the NN outputs near-optimal solutions to the MMAP
problem.

In this paper, we assume that the sets of evidence
(
E = {Ei}Ni=1

)
and query

(
Q = {Qj}Mj=1

)
variables are known a

priori and do not change at both training and test time. We leave as future work the generalization of our approach that
can handle variable length, arbitrarily chosen evidence, and query sets. Also, note that our proposed method does not
depend on the particular NN architecture used, and we only require that each output node is a continuous quantity in the
range [0, 1] and uses a differentiable activation function (e.g., the sigmoid function).

We can learn the parameters of the given NN either in a supervised manner or in a self-supervised manner. However,
the supervised approach is impractical, as described below.

In the supervised setting, we assume that we are given training data D = {⟨e1,q∗
1⟩, . . . , ⟨ed,q∗

d⟩}, where each input ei
is an assignment to the evidence variables, and each (label) q∗

i is an optimal solution to the corresponding MMAP
task, namely q∗

i = MMAP(Q, ei). We then use supervised loss functions such as the mean-squared-error (MSE)∑d
i=1 ∥q∗

i − qc
i )∥22/d and the mean-absolute-error (MAE)

∑d
i=1 ∥q∗

i − qc
i∥1/d where qc

i is the predicted assignment
(note that qc

i is continuous), and standard gradient-based methods to learn the parameters. Although supervised
approaches allow us to use simple-to-implement loss functions, they are impractical if the number of query variables is
large because they require access to the exact solutions to several intractable MMAP problems2. We therefore propose
to use a self-supervised approach.

3.1 A Self-Supervised Loss Function for PCs

In the self-supervised setting, we need access to training data in the form of assignments to the evidence variables, i.e.,
D′ = {e1, . . . , ed}. Since smooth and decomposable PCs admit perfect sampling, these assignments can be easily
sampled from the PC via top-down AND/OR sampling Gogate and Dechter [2012]. The latter yields an assignment

2Note that the training data used to train the NN in the supervised setting is different from the training data used to learn the PC.
In particular, in the data used to train the PC, the assignments to the query variables Q may not be optimal solutions of MMAP(Q, e).
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x over all the random variables in the PC. Then we simply project x on the evidence variables E to yield a training
example e. Because each training example can be generated in time that scales linearly with the size of the PC, in
practice, our proposed self-supervised approach is likely to have access to much larger number of training examples
compared to the supervised approach.

Let qc denote the MMAP assignment predicted by the NN given evidence e ∈ D′ where qc ∈ [0, 1]M . In MMAP
inference, given e, we want to find an assignment q such that ln pM(e,q) is maximized, namely, − ln pM(e,q) is
minimized. Thus, a natural loss function that we can use is − ln pM(e,q). Unfortunately, the NN outputs a continuous
vector qc and as a result pM(e,qc) is not defined. Therefore, we cannot use − ln pM(e,qc) as a loss function.

One approach to circumvent this issue is to use a threshold (say 0.5) to convert each continuous quantity in the range
[0,1] to a binary one. A problem with this approach is that the threshold function is not differentiable.

Therefore, we propose to construct a smooth, differentiable loss function that given qc = (qc1, . . . , q
c
M ) approximates

− ln pM(e,q) where q = (q1 = [qc1 > 0.5], . . . , qM = [qcM > 0.5]) and [qci > 0.5] is an indicator function which is 1
if qci > 0.5 and 0 otherwise. The key idea in our approach is to construct a new PC, which we call Query-specific PC
(QPC) by replacing all binary leaf nodes associated with the query variables in the original PC, namely those labeled
by Q and ¬Q where Q ∈ Q, with continuous nodes Qc ∈ [0, 1] and ¬Qc ∈ [0, 1]. Then our proposed loss function is
obtained using value computations (at the root node of the QPC) via a simple modification of the leaf function of the
PC. At a high level, our new leaf function assigns each leaf node labeled by Qc

j such that Qj ∈ Q to its corresponding
estimate qcj , obtained from the NN and each leaf node labeled by ¬Qc

j such that Qj ∈ Q to 1− qcj .

Formally, for the QPC, we propose to use leaf function l′(n, (e,qc)) defined as follows:

1. If the label of n is Qc
j such that Qj ∈ Q then l′(n, (e,qc)) = qcj .

2. If n is labeled by ¬Qc
j such that Qj ∈ Q then l′(n, (e,qc)) = 1− qcj .

3. If n is labeled by Ek such that Ek ∈ E and the assignment Ek = 0 is in e then l′(n, (e,qc)) = 0.
4. If n is labeled by ¬Ek such that Ek ∈ E and the assignment Ek = 1 is in e then l′(n, (e,qc)) = 0.
5. If conditions (1)-(4) are not met then l′(n, (e,qc)) = 1.

The value of each node n in the QPC, denoted by v′(n, (e,qc)) is given by a similar recursion to the one given in
Eq. (1) for PCs, except that the leaf function l(n,q) is replaced by the new (continuous) leaf function l′(n, (e,qc)).
Formally, v′(n, (e,qc)) is given by

v′(n, (e,qc)) =


l′(n, (e,qc)) if n ∈ L∑

m∈ch(n) ω(m,n)v′(m, (e,qc)) if n ∈ S∏
m∈ch(n) v

′(n, (e,qc)) if n ∈ P
(4)

Let r denote the root node of M, then we propose to use − ln v′(r, (e,qc)) as a loss function.
Example 3. Figure 1(b) shows the QPC corresponding to the PC shown in Figure 1(a). We also show value
computations for the assignment (Xc

3 = 0.99, Xc
4 = 0.05).

3.2 Tractable Gradient Computation

Our proposed loss function is smooth and continuous because by construction, it is a negative logarithm of a multilinear
function over qc. Next, we show that the partial derivative of the function w.r.t. qcj can be computed in linear time in the
size of the QPC3. More specifically, in order to compute the partial derivative of QPC with respect to qc

j , we simply
have to use a new leaf function which is identical to l′ except that if the label of a leaf node n is Qc

j then we set its value
to 1 (instead of qcj ) and if it is ¬Qc

j then we set its value −1 (instead of 1− qcj ). We then perform bottom-up recursive
value computations over the QPC and the value of the root node is the partial derivative of the QPC with respect to qc

j .
In summary, it is straight-forward to show that:
Proposition 1. The gradient of the loss function − ln v′(r, (e,qc)) w.r.t. qc

j can be computed in time and space that
scales linearly with the size of M.
Example 4. The partial derivative of the QPC given in figure 1(b) w.r.t. xc

3 given (Xc
3 = 0.99, Xc

4 = 0.05) can be
obtained by setting the leaf nodes Xc

3 to 1 and ¬Xc
3 to −1, assigning all other leaves to the values shown in Figure 1(b)

and then performing value computations. After the value computation phase, the value of the root node will equal the
partial derivative of the QPC w.r.t. xc

3.
3Recall that qcj is an output node of the NN and therefore backpropagation over the NN can be performed in time that scales

linearly with the size of the NN and the QPC
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3.3 Improving the Loss Function

As mentioned earlier, our proposed loss function is a continuous approximation of the discrete function − ln v(r, (e,q))
where q = (q1 = [qc1 > 0.5], . . . , qM = [qcM > 0.5]) and the difference between the two is minimized iff q = qc.
Moreover, since the set of continuous assignments includes the discrete assignments, it follows that:

min
qc

{− ln v′(r, (e,qc))} ≤ min
q

{− ln v(r, (e,q))} (5)

Since the right-hand side of the inequality given in (5) solves the MMAP task, we can improve our loss function by
tightening the lower bound. This can be accomplished using an entropy-based penalty, controlled by a hyper-parameter
α > 0, yielding the loss function

ℓ(qc) = − ln v′(r, (e,qc))− α

M∑
j=1

qcj log(q
c
j) + (1− qcj) log(1− qcj) (6)

The second term in the expression given above is minimized when each qcj is closer to 0 or 1 and is maximized when
qcj = 0.5. Therefore, it encourages 0/1 (discrete) solutions. The hyperparameter α controls the magnitude of the penalty.
When α = 0, the above expression finds an assignment based on the continuous approximation − ln v′(r, (e,qc)). On
the other hand, when α = ∞ then only discrete solutions are possible yielding a non-smooth loss function. α thus helps
us trade the smoothness of our proposed loss function with its distance to the true loss.

4 Experiments

In this section, we describe and analyze the results of our comprehensive experimental evaluation for assessing the
performance of our novel Self-Supervised learning based MMAP solver for PCs, referred to as SSMP hereafter. We begin
by describing our experimental setup including competing methods, evaluation criteria, as well as NN architectures,
datasets, and PCs used in our study.

4.1 Competing Methods

We use three polytime baseline methods from the PC and probabilistic graphical models literature Park and Darwiche
[2004], Poon and Domingos [2011]. We also compared the impact of using the solutions computed by the three baseline
schemes as well our method SSMP as initial state for stochastic hill climbing search.

Baseline 1: MAX Approximation (Max). In this scheme Poon and Domingos [2011], the MMAP assignment is derived
by substituting sum nodes with max nodes. During the upward pass, a max node produces the maximum weighted value
from its children instead of their weighted sum. Subsequently, the downward pass begins from the root and iteratively
selects the highest-valued child of a max node (or one of them), along with all children of a product node.

Baseline 2: Maximum Likelihood Approximation (ML) Park and Darwiche [2004] For each variable Q ∈ Q, we first
compute the marginal distribution pM(Q|e) and then set Q to argmaxj∈{0,1} pM(Q = j|e).

Baseline 3: Sequential Approximation (Seq) In this scheme Park and Darwiche [2004], we assign the query variables
one by one until no query variables remain unassigned. At each step, we choose an unassigned query variable Qj ∈ Q
that maximizes the probability pM(qj |e,y) for one of its values qj and assign it to qj where y represents the assignment
to the previously considered query variables.

Stochastic Hill Climbing Search. We used the three baselines and our SSMP method as the initial state in stochastic
hill climbing search for MMAP inference described in Park and Darwiche [2004]. The primary goal of this experiment
is to assess whether our scheme can assist local search-based anytime methods in reaching better solutions than other
heuristic methods for initialization. In our experiments, we ran stochastic hill climbing for 100 iterations for each
MMAP problem.

4.2 Evaluation Criteria

We evaluated the performance of the competing schemes along two dimensions: log-likelihood scores and inference
times. Given evidence e and query answer q, the log-likelihood score is given by ln pM(e,q).

4.3 Datasets and Probabilistic Circuits

We use twenty-two widely used binary datasets from the tractable probabilistic models’ literature Lowd and Davis
[2010], Haaren and Davis [2012], Larochelle and Murray [2011], Bekker et al. [2015] (we call them TPM datasets)
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as well as the binarized MNIST Salakhutdinov and Murray [2008], EMNIST Cohen et al. [2017] and CIFAR-10
Krizhevsky et al. [2009] datasets. We used the DeeProb-kit library Loconte and Gala [2022] to learn a sum-product
network (our choice of PC) for each dataset. The number of nodes in these learned PCs ranges from 46 to 22027.

For each PC and each test example in the 22 TPM datasets, we generated two types of MMAP instances: MPE instances
in which H is empty and MMAP instances in which H is not empty. We define query ratio, denoted by qr, as the
fraction of variables that are part of the query set. For MPE, we selected qr from {0.1, 0.3, 0.5, 0.6, 0.7, 0.8, 0.9}, and
for MMAP, we replaced 0.9 with 0.4 to avoid small H and E. For generating MMAP instances, we used 50% of the
remaining variables as evidence variables (and for MPE instances all remaining variables are evidence variables).

For the MNIST, EMNIST, and CIFAR-10 datasets, we used qr = 0.7 and generated MPE instances only. More
specifically, we used the top 30% portion of the image as evidence, leaving the bottom 70% portion as query variables.
Also, in order to reduce the training time for PCs, note that for these datasets, we learned a PC for each class, yielding a
total of ten PCs for each dataset.

4.4 Neural Network Optimizers

For each PC and query ratio combination, we trained a corresponding neural network (NN) using the loss function
described in the previous section. Because we have 22 TPM datasets and 7 query ratios for them, we trained 154 NNs
for the MPE task and 154 for the MMAP task. For the CIFAR-10, MNIST and EMNIST datasets, we trained 10 NNs,
one for each PC (recall that we learned a PC for each class).

Because our learning method does not depend on the specific choice of neural network architectures, we use a fixed
neural network architecture across all experiments: fully connected with four hidden layers having 128, 256, 512,
and 1024 nodes respectively. We used ReLU activation in the hidden layers, sigmoid in the output layer, dropout
for regularization Srivastava et al. [2014] and Adam optimizer Kingma and Ba [2017] with a standard learning rate
scheduler for 50 epochs. All NNs were trained using PyTorch Paszke et al. [2019] on a single NVIDIA A40 GPU. We
select a value for the hyperparameter α used in our loss function (see equation (6)) via 5-fold cross validation.

4.5 Results on the TPM Datasets

MPE MMAP
Max SSMP ML Seq Max SSMP ML Seq

Max 0 64 33 14 0 46 23 10
SSMP 88 0 96 77 97 0 102 82
ML 6 49 0 15 3 34 0 10
Seq 105 63 105 0 117 53 117 0

Table 1: Contingency tables over the competing methods for MPE and MMAP problems. Highlighted values represent
results for SSMP.

We summarize our results for the competing schemes (3 baselines and SSMP) on the 22 TPM datasets using the two
contingency tables given in Table 1, one for MPE and one for MMAP. Detailed results are provided in the supplementary
material. Recall that we generated 154 test datasets each for MPE and MMAP (22 PCs × 7 qr values). In all contingency
tables, the number in the cell (i, j) equals the number of times (out of 154) that the scheme in the i-th row was better in
terms of average log-likelihood score than the scheme in the j-th column. The difference between 154 and the sum of
the numbers in the cells (i, j) and (j, i) equals the number of times the scheme in the i-th row and j-th column had
identical log-likelihood scores.

From the MPE contingency table given in Table 1, we observe that SSMP is superior to Max, ML, and Seq approximations.
The Seq approximation is slightly better than the Max approximation, and ML is the worst-performing scheme. For the
harder MMAP task, we see a similar ordering among the competing schemes (see Table 1) with SSMP dominating other
schemes. In particular, SSMP outperforms the Max and ML approximations in almost two-thirds of the cases and the Seq
method in more than half of the cases.

We also investigate the effectiveness of SSMP and other baseline approaches when employed as initialization strategies
for Hill Climbing Search. These findings are illustrated in the contingency tables given in Table 2. The results for MPE
are presented on the left side, while those for MMAP are presented on the right. Notably, SSMP outperforms all other
baseline approaches in nearly two-thirds of the experiments for both MPE and MMAP tasks. These results demonstrate
that SSMP can serve as an effective initialization technique for anytime local search-based algorithms.
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MPE MMAP
Max SSMP ML Seq Max SSMP ML Seq

Max 0 40 13 9 0 27 10 16
SSMP 93 0 99 87 98 0 100 86
ML 19 37 0 14 12 26 0 17
Seq 85 44 82 0 89 39 90 0

Table 2: Contingency tables for Hill Climbing Search initialized using the competing methods for MPE and MMAP
problems. Highlighted values represent results for SSMP.

Max SSMP ML Seq
Max 0 0 0 2

SSMP 9 0 9 9
ML 0 0 0 2
Seq 7 0 7 0

Table 3: Contingency table over the competing methods for MPE on CIFAR-10. Highlighted values are for SSMP.

In Figure 2, via a heat-map representation, we show a more detailed performance comparison between SSMP and the Max
approximation, which is a widely used baseline for MPE and MMAP inference in PCs. In the heat-map representation,
the y-axis represents the datasets (ordered by the number of variables), while the x-axis shows the query ratio. The
values in each cell represent the percentage difference between the mean log-likelihood scores of SSMP and the Max
approximation. Formally, let llssmp and llmax denote the mean LL scores of SSMP and Max approximation respectively,
then the percentage difference is given by

%Diff. =
llssmp − llmax

|llmax|
× 100 (7)

From the heatmap for MPE given in Figure 2(a), we observe that SSMP is competitive with the Max approximation when
the size of the query set is small. However, as the number of query variables increases, signaling a more challenging
problem, SSMP consistently outperforms or has similar performance to the Max method across all datasets, except for
accidents, pumsb-star, and book.

The heatmaps for MMAP are illustrated in Figure 2(b). We see a similar trend as the one for MPE; SSMP remains
competitive with the Max approximation, particularly when the number of query variables is small. While SSMP
outperforms (with some exceptions) the Max approximation when the number of query variables is large.

Finally, we present inference times in the supplement. On average SSMP requires in the order of 7-10 micro-seconds
for MMAP inference on an A40 GPU. The Max approximation takes 7 milli-seconds (namely, SSMP is almost 1000
times faster). In comparison, as expected, the Seq and ML approximations are quite slow, requiring roughly 400 to 600
milliseconds to answer MPE and MMAP queries. In the case of our proposed method (SSMP), during the inference
process, the size of the SPN holds no relevance; its time complexity is linear in the size of the neural network. On the
contrary, for the alternative methods, the inference time is intricately dependent on the size of the SPN.

4.6 Results on the CIFAR-10 Dataset

We binarized the CIFAR-10 dataset using a variational autoencoder having 512 bits. We then learned a PC for each of
the 10 classes; namely, we learned a PC conditioned on the class variable. As mentioned earlier, we randomly set 70%
of the variables as query variables. The contingency table for CIFAR-10 is shown in Table 3. We observe that SSMP
dominates all competing methods while the Seq approximation is the second-best performing scheme (although note
that Seq is computationally expensive).

4.7 Results on the MNIST and EMNIST Datasets

Finally, we evaluated SSMP on the image completion task using the Binarized MNIST Salakhutdinov and Murray [2008]
and the EMNIST datasets Cohen et al. [2017]. As mentioned earlier, we used the top 30% of the image as evidence and
estimated the bottom 70% by solving the MPE task over PCs using various competing methods. The contingency tables
for the MNIST and EMNIST datasets are shown in Table 4. We observe that on the MNIST dataset, SSMP is better than
all competing schemes on 9 out of the 10 PCs, while it is inferior to all on one of them. On the EMNIST dataset, SSMP
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Figure 2: Heat map showing the % difference in log-likelihood scores between SSMP and Max approximation. Each row
denotes a distinct dataset, with the color gradient depicting the % Difference. The gradient extends from dark blue to
light blue, indicating areas where Max is superior (negative values), and from light red to dark red, highlighting regions
where SSMP outperforms (positive values).

is better than all competing schemes on 7 out of the 10 PCs and inferior to all on one of the PCs. Detailed results on the
image datasets, including qualitative comparisons, are provided in the supplement.

In summary, we find that, on average, our proposed method (SSMP) is better than other baseline MPE/MMAP approxi-
mations in terms of log-likelihood score. Moreover, it is substantially better than the baseline methods when the number
of query variables is large. Also, once learned from data, it is also significantly faster than competing schemes.

5 Conclusion and Future Work

In this paper, we introduced a novel self-supervised learning algorithm for solving MMAP queries in PCs. Our
contributions comprise a neural network approximator and a self-supervised loss function which leverages the tractability
of PCs for achieving scalability. Notably, our method employs minimal hyperparameters, requiring only one in the
discrete case. We conducted a comprehensive empirical evaluation across various benchmarks; specifically, we
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MNIST EMNIST
Max SSMP ML Seq Max SSMP ML Seq

Max 0 1 0 1 0 1 0 5
SSMP 9 0 9 9 7 0 7 7
ML 0 1 0 1 0 1 0 5
Seq 9 1 9 0 3 1 3 0

Table 4: Contingency tables over the competing methods for MPE on the MNIST and EMNIST datasets. Highlighted
values represent results for SSMP.

experimented with 22 binary datasets used in tractable probabilistic models community and three classic image datasets,
MNIST, EMNIST, and CIFAR-10. We compared our proposed neural approximator to polytime baseline techniques
and observed that it is superior to the baseline methods in terms of log-likelihood scores and is significantly better in
terms of computational efficiency. Additionally, we evaluated how our approach performs when used as an initialization
scheme in stochastic hill climbing (local) search and found that it improves the quality of solutions output by anytime
local search schemes. Our empirical results clearly demonstrated the efficacy of our approach in both accuracy and
speed.

Future work includes compiling PCs to neural networks for answering more complex queries that involve constrained
optimization; developing sophisticated self-supervised loss functions; learning better NN architecture for the given PC;
generalizing our approach to arbitrarily chosen query and evidence subsets; etc.
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A Proof Sketch for Proposition 1

Without loss of generality, assume that the root node of the QPC is a sum node, the QPC has alternating levels of
sum and product nodes and assume that we are computing the partial derivative of the QPC w.r.t. node Xc

j such that
Xj ∈ Qj . Because the QPC is smooth, all child nodes of the root node must contain Xc

j . Therefore, by sum rule of
derivative, the derivative at the root node is given by:

∂v(r, e,q)

∂xc
j

=
∑

m∈ch(r)

ω(m, r)
∂v(m, e,q)

∂xc
j

(8)

We assume that the QPC is decomposable. As a result, at each product node n of the root, exactly one child node of n
will be defined over Xc

j . Therefore, while computing the derivative, we can treat the values of other child nodes as
constants (since they do not depend on Xc

j ). Let the child node of n that is defind over Xc
j be denoted by mj . Then, the

partial derivative of the product node w.r.t. Xc
j is given by:

∂v(n, e,q)

∂xc
j

=
∂v(mj , e,q)

∂xc
j

∏
m∈ch(n):m̸=mj

v(m, e,q) (9)

Continuing this analysis further, it is easy to see that the partial derivative of each sum and product node that mentions
Xc

j (w.r.t. Xc
j ) is given by equations (8) and (9) respectively.

The derivative of the leaf node labeled by Xc
j w.r.t. xc

j equals 1, because it is assigned to xc
j . Similarly, the derivative of

the leaf node labeled by ¬Xc
j w.r.t. xc

j equals −1, because it is assigned to 1− xc
j .

Thus, we observe that the only leaf assignments that change from the QPC used to compute the loss function are the
ones labeled by Xc

j and ¬Xc
j . In particular, they go from xc

j and 1− xc
j to 1 and −1 respectively. (While all other leaf

assignments stay the same.)

Therefore, the partial derivative of the QPC w.r.t. Xc
j can be computed via value computations using the new leaf

assignments described above. Since the value computations require only one pass over the QPC, they run in linear time
in the size of the QPC.
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Figure 3: (a) Value computations for partial derivative of the QPC given in Figure 1 in the main paper w.r.t. Xc
3 and (b)

Value computations for partial derivative of the QPC given in Figure 1 in the main paper w.r.t. Xc
4 . The values of the

leaf, sum and product nodes are given in brackets on their bottom, top and left respectively. The value of the root node
equals the partial derivative.

Example 5. Figures 3(a) and (b) show the value computations for the partial derivative of the QPC w.r.t. Xc
3 and Xc

4
respectively.

B Experimental Setup and Details

B.1 An Overview of the Datasets and Models

We furnish comprehensive information regarding the datasets employed for conducting our experiments in Tables
5 and 6, along with the PC models utilized for these evaluations. Our selection of datasets is deliberate, aiming to
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encompass a diverse range of scenarios and serve as representative instances to assess the performance and scalability
of our algorithms comprehensively. It’s important to note that for the EMNIST dataset, we select classes exclusively
from the EMNIST Letters subset.

Dataset Number of Variables Number of Nodes in PC
nltcs 16 125

msnbc 17 46
kdd 64 274

plants 69 3737
baudio 100 348
bnetflix 100 400
jester 100 274

accidents 111 1178
mushrooms 112 902

connect4 126 2128
tretail 135 359
rcv1 150 519

pumsb star 163 2860
dna 180 1855

kosarek 190 779
tmovie 500 7343
book 500 1628

cwebkb 839 3154
cr52 889 7348

c20ng 910 2467
moviereview 1001 2567

bbc 1058 3399

Table 5: Overview of Dataset and PC Model Descriptions for TPM Datasets

Dataset Name Class Number of Variables Number of Nodes in PC
cifar10 0 512 1294
cifar10 1 512 1326
cifar10 2 512 1280
cifar10 3 512 1684
cifar10 4 512 1743
cifar10 5 512 1632
cifar10 6 512 1796
cifar10 7 512 1359
cifar10 8 512 1300
cifar10 9 512 1279

emnist 1 784 2125
emnist 2 784 2124
emnist 3 784 2100
emnist 4 784 2122
emnist 19 784 2684
emnist 20 784 2147
emnist 22 784 2060
emnist 24 784 2734
emnist 26 784 2137

mnist 0 784 3960
mnist 1 784 4324
mnist 2 784 4660
mnist 3 784 4465
mnist 4 784 4510
mnist 5 784 4063
mnist 6 784 3776
mnist 7 784 4408
mnist 8 784 3804
mnist 9 784 3714

Table 6: CIFAR, MNIST, EMNIST Letters: Dataset and PC Overview
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B.2 Hyperparameter Selection

In our experimental setup, we maintained a consistent minibatch size of 128 instances across all conducted experiments.
To ensure effective training, we adopted a learning rate decay strategy wherein the learning rate was reduced by a factor
of 0.9 after a fixed number of training epochs. As detailed in the primary text, the selection of optimal hyperparameters
was accomplished through 5-fold cross validation.

In the context of discrete scenarios, a single hyperparameter α was required. To determine the most suitable value
for α, we conducted an exploration within the range of {0.01, 0.1, 1, 10, 100, 1000}. This systematic approach to
hyperparameter tuning contributes to the reliability and generalizability of our experimental results.

B.3 Label Generation for Supervised Learning Benchmarks

In the process of comparing the performance of SSMP method with the supervised learning approach outlined in the
paper, we adopted the Stochastic Hill Climbing Search. This selection was guided by the challenge posed by the
substantial number of potential query variables present in our experimental setup. Given the complexity of obtaining
exact solutions within such a context, we opted for an alternative method that aligns with practical feasibility.

Our approach involved initializing the query variables randomly and conducting 1000 iterations for each specific
problem instance. This iterative process yielded labels that were subsequently employed to train a supervised neural
network. By employing this methodology, we aimed to effectively navigate the challenges posed by a significant
number of query variables, facilitating a meaningful comparative evaluation between SSMP and the supervised learning
approach.

C Inference Time Comparison on TPM Datasets
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(b) MMAP

Figure 4: Heatmap illustrating inference time for ML, Seq, Max, and SSMP methods on a Logarithmic micro-second
scale. The color green indicates shorter (more favorable) time.

We have presented the inference times for both the polytime baseline methods and our proposed SSMP method, as
illustrated in Figure 4. The inference times for MPE queries are depicted in Figure 4a, while those for MMAP queries
are showcased in Figure 4b. The values in each cell correspond to the natural logarithm of the time in microseconds
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for each method and dataset. Lower values are represented by green, while higher values are denoted by red. Notably,
our method exhibits a substantial performance advantage over all other methods. Additionally, it is noteworthy that
as the dataset size (and consequently the SPN size) increases, the inference time for the baseline methods (ML, Seq,
and Max) increases, whereas our method’s inference time remains almost the same. This distinction arises because the
baseline methods depend on the SPN size during inference, whereas our approach allows us to regulate inference time
by modifying the neural network’s size without impacting the SPN.

D A Comparative Analysis: SSMP Method Versus Supervised Learning Approaches
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Figure 5: Heatmap showing the percentage difference in log-likelihood scores between SSMP and Supervised Learning
method. Blue color represents the supervised method’s superiority (negative values), while red color represents SSMP’s
superiority (positive values). The datasets are arranged in ascending order of their number of variables.

We conduct a comparative analysis of our approach against supervised learning methods to assess its performance in
the heatmaps shown in Figure 5. The heatmap on the left illustrates the percentage difference in log-likelihood scores
for MPE, while the one on the right depicts the corresponding difference for MMAP. Labels for training the supervised
method are obtained through the procedure outlined in the previous section. Subsequently, training is executed using the
mean squared error (MSE) criterion. We adopt an identical neural network architecture as employed in SSMP method,
maintaining consistent training protocols across all aspects except for the training procedure and loss function. This
facilitates a direct comparison of these methods, exclusively in terms of their training processes and associated losses.
It’s worth noting that generating accurate labels in this context presents a significant challenge due to the substantial
volume of query variables involved.

By observing the heatmaps, we can confirm that our method consistently surpasses the performance of the supervised
approach across all cases, except for one instance (specifically, for the kdd dataset and query = 0.1 for MMAP), where
both methods exhibit equivalent log-likelihood scores. The supervised method closely aligns with our approach for
smaller query sets across most datasets. However, as the query variable count grows, the supervised method’s efficacy
diminishes. This trend is also pronounced when increasing the variable count within the datasets, leading to a decrease
in the supervised method’s performance, as depicted in the heatmap. This underscores the need for a self-supervised
approach that operates independently of true labels. Notably, the training duration for supervised methods encompasses
the time required to obtain the true labels, whereas our method depends solely on a trained probabilistic classifier (PC)
to propagate the loss.

E Negative Log Likelihood Scores: SSMP Method vs. Baseline Methods

We present the negative log-likelihood scores for all datasets in Figures 6 through 27 for the MPE method, and in
Figures 28 through 49 for the MMAP method. Each bar corresponds to the mean value of the respective method,
while the tick marks denote the mean ± standard deviation. Note that since we are considering the negative of the log
likelihood means, lower values indicate superior performance by the method. These detailed visualizations enable us to
grasp the performance characteristics of our method, alongside the baseline techniques including Max, ML, and Seq,
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across diverse datasets, query ratios, and evidence ratios. Across all the plots, negative log likelihood scores for Max are
depicted using blue bars, SSMP method’s scores are indicated by yellow bars, green bars represent scores for ML method,
and Seq method’s scores are visualized through red bars.

E.1 Scores for MPE
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Figure 6: Negative Log-Likelihood Scores for SSMP Method and Baselines on NLTCS for MPE. Lower Scores Indicate
Better Performance

Figures 6 to 27 display the results of the MPE task on the TPM datasets. As indicated by the heatmaps and contingency
tables in the main paper, our method performs well compared to other baselines. Notably, as the query set size increases,
our method’s improvement becomes more pronounced. For smaller query ratios, our method competes reasonably well
with other methods, with only a few datasets where it falls slightly short.

E.2 Scores for MMAP

Similar patterns emerge when examining figures 28 through 49, which pertain to the MMAP task. Notably, SSMP’s
performance excels even further in this task. Interestingly, it also demonstrates a slight advantage for smaller queries in
comparison to its performance in the MPE task. This underscores a distinct attribute of our method: it’s capacity to
enhance its performance as task complexity increases, a quality that sets it apart from other approaches.

Our method excels in the MPE task on TPM datasets, outperforming baselines for larger query sets. Notably, it exhibits
adaptive prowess in the MMAP task, showcasing improved performance for smaller queries.
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Figure 7: Negative Log-Likelihood Scores for SSMP Method and Baselines on MSNBC for MPE. Lower Scores Indicate
Better Performance
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Figure 8: Negative Log-Likelihood Scores for SSMP Method and Baselines on kdd for MPE. Lower Scores Indicate
Better Performance
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Figure 9: Negative Log-Likelihood Scores for SSMP Method and Baselines on plants for MPE. Lower Scores Indicate
Better Performance
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Figure 10: Negative Log-Likelihood Scores for SSMP Method and Baselines on baudio for MPE. Lower Scores Indicate
Better Performance
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Figure 11: Negative Log-Likelihood Scores for SSMP Method and Baselines on jester for MPE. Lower Scores Indicate
Better Performance
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Figure 12: Negative Log-Likelihood Scores for SSMP Method and Baselines on bnetflix for MPE. Lower Scores Indicate
Better Performance
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Figure 13: Negative Log-Likelihood Scores for SSMP Method and Baselines on accidents for MPE. Lower Scores
Indicate Better Performance
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Figure 14: Negative Log-Likelihood Scores for SSMP Method and Baselines on mushrooms for MPE. Lower Scores
Indicate Better Performance
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Figure 15: Negative Log-Likelihood Scores for SSMP Method and Baselines on connect4 for MPE. Lower Scores
Indicate Better Performance
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Figure 16: Negative Log-Likelihood Scores for SSMP Method and Baselines on rcv1 for MPE. Lower Scores Indicate
Better Performance
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Figure 17: Negative Log-Likelihood Scores for SSMP Method and Baselines on tretail for MPE. Lower Scores Indicate
Better Performance
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Figure 18: Negative Log-Likelihood Scores for SSMP Method and Baselines on pumsb for MPE. Lower Scores Indicate
Better Performance
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Figure 19: Negative Log-Likelihood Scores for SSMP Method and Baselines on dna for MPE. Lower Scores Indicate
Better Performance
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Figure 20: Negative Log-Likelihood Scores for SSMP Method and Baselines on kosarek for MPE. Lower Scores Indicate
Better Performance
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Figure 21: Negative Log-Likelihood Scores for SSMP Method and Baselines on book for MPE. Lower Scores Indicate
Better Performance
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Figure 22: Negative Log-Likelihood Scores for SSMP Method and Baselines on tmovie for MPE. Lower Scores Indicate
Better Performance
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Figure 23: Negative Log-Likelihood Scores for SSMP Method and Baselines on cwebkb for MPE. Lower Scores Indicate
Better Performance
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Figure 24: Negative Log-Likelihood Scores for SSMP Method and Baselines on cr52 for MPE. Lower Scores Indicate
Better Performance
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Figure 25: Negative Log-Likelihood Scores for SSMP Method and Baselines on c20ng for MPE. Lower Scores Indicate
Better Performance
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Figure 26: Negative Log-Likelihood Scores for SSMP Method and Baselines on moviereview for MPE. Lower Scores
Indicate Better Performance
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Figure 27: Negative Log-Likelihood Scores for SSMP Method and Baselines on bbc for MPE. Lower Scores Indicate
Better Performance
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Figure 28: Negative Log-Likelihood Scores for SSMP Method and Baselines on NLTCS for MMAP. Lower Scores
Indicate Better Performance.
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Figure 29: Negative Log-Likelihood Scores for SSMP Method and Baselines on MSNBC for MMAP. Lower Scores
Indicate Better Performance.
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Figure 30: Negative Log-Likelihood Scores for SSMP Method and Baselines on kdd for MMAP. Lower Scores Indicate
Better Performance.
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Figure 31: Negative Log-Likelihood Scores for SSMP Method and Baselines on plants for MMAP. Lower Scores
Indicate Better Performance.
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Figure 32: Negative Log-Likelihood Scores for SSMP Method and Baselines on baudio for MMAP. Lower Scores
Indicate Better Performance.
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Figure 33: Negative Log-Likelihood Scores for SSMP Method and Baselines on jester for MMAP. Lower Scores Indicate
Better Performance.
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Figure 34: Negative Log-Likelihood Scores for SSMP Method and Baselines on bnetflix for MMAP. Lower Scores
Indicate Better Performance.
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Figure 35: Negative Log-Likelihood Scores for SSMP Method and Baselines on accidents for MMAP. Lower Scores
Indicate Better Performance.
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Figure 36: Negative Log-Likelihood Scores for SSMP Method and Baselines on mushrooms for MMAP. Lower Scores
Indicate Better Performance.
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Figure 37: Negative Log-Likelihood Scores for SSMP Method and Baselines on connect4 for MMAP. Lower Scores
Indicate Better Performance.
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Figure 38: Negative Log-Likelihood Scores for SSMP Method and Baselines on rcv1 for MMAP. Lower Scores Indicate
Better Performance.
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Figure 39: Negative Log-Likelihood Scores for SSMP Method and Baselines on tretail for MMAP. Lower Scores
Indicate Better Performance.
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Figure 40: Negative Log-Likelihood Scores for SSMP Method and Baselines on pumsb for MMAP. Lower Scores
Indicate Better Performance.
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Figure 41: Negative Log-Likelihood Scores for SSMP Method and Baselines on dna for MMAP. Lower Scores Indicate
Better Performance.
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Figure 42: Negative Log-Likelihood Scores for SSMP Method and Baselines on kosarek for MMAP. Lower Scores
Indicate Better Performance.
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Figure 43: Negative Log-Likelihood Scores for SSMP Method and Baselines on book for MMAP. Lower Scores Indicate
Better Performance.
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Figure 44: Negative Log-Likelihood Scores for SSMP Method and Baselines on tmovie for MMAP. Lower Scores
Indicate Better Performance.
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Figure 45: Negative Log-Likelihood Scores for SSMP Method and Baselines on cwebkb for MMAP. Lower Scores
Indicate Better Performance.
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Figure 46: Negative Log-Likelihood Scores for SSMP Method and Baselines on cr52 for MMAP. Lower Scores Indicate
Better Performance.
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Figure 47: Negative Log-Likelihood Scores for SSMP Method and Baselines on c20ng for MMAP. Lower Scores
Indicate Better Performance.
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Figure 48: Negative Log-Likelihood Scores for SSMP Method and Baselines on moviereview for MMAP. Lower Scores
Indicate Better Performance.
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Figure 49: Negative Log-Likelihood Scores for SSMP Method and Baselines on bbc for MMAP. Lower Scores Indicate
Better Performance.

F Completing Images in MNIST and EMNIST: Enhancing Visual Coherence

Qualitative image completions for MNIST and EMNIST datasets are presented in Figure 50 for MNIST Digits {5, 6, 8,
9} and EMNIST characters {a, c, s, v} by SSMP and Max. Beginning with the original image as the initial reference,
followed by the Max method’s completion attempt, and culminating in our novel SSMP method’s completion. Notably,
SSMP demonstrates equal or superior performance compared to the Max method. In particular, characters such as 8, 9, A,
and S display discrepancies in their Max-generated completions, where the lower segments fail to seamlessly align with
their upper counterparts. In stark contrast, the proposed SSMP method offers a remarkable improvement in completion
quality. It adeptly addresses the difficulties posed by limited available evidence and generates reconstructions that
are not only smoother but also exhibit remarkable coherence. This highlights SSMP method’s efficacy in real-world
scenarios with limited information.
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(a) MNIST Digit 5 (b) MNIST Digit 6

(c) MNIST Digit 8 (d) MNIST Digit 9

(e) EMNIST Character A (f) EMNIST Character C

(g) EMNIST Character S (h) EMNIST Character V

Figure 50: Image Completions for MNIST and EMNIST datasets. First image: Original. Second image: Max
Completion. Third image: SSMP Completion. The gray line separates evidence (above) from query (below).

40


	Introduction
	Preliminaries
	Probabilistic Circuits
	Marginal Inference in PCs
	Marginal Maximum-a-Posteriori (MMAP) Inference in PCs

	A Neural Optimizer for MMAP in PCs
	A Self-Supervised Loss Function for PCs
	Tractable Gradient Computation
	Improving the Loss Function

	Experiments
	Competing Methods
	Evaluation Criteria
	Datasets and Probabilistic Circuits
	Neural Network Optimizers
	Results on the TPM Datasets
	Results on the CIFAR-10 Dataset
	Results on the MNIST and EMNIST Datasets

	Conclusion and Future Work
	Proof Sketch for Proposition 1
	Experimental Setup and Details
	An Overview of the Datasets and Models
	Hyperparameter Selection
	Label Generation for Supervised Learning Benchmarks

	Inference Time Comparison on TPM Datasets
	A Comparative Analysis: SSMP Method Versus Supervised Learning Approaches
	Negative Log Likelihood Scores: SSMP Method vs. Baseline Methods
	Scores for MPE
	Scores for MMAP

	Completing Images in MNIST and EMNIST: Enhancing Visual Coherence

