arXiv:2312.14556v1 [cs.CV] 22 Dec 2023

CAPTAINCOOK4D: A DATASET FOR UNDERSTANDING
ERRORS IN PROCEDURAL ACTIVITIES

Rohith Peddi* Shivvrat Arya’, Bharath Challa®, Likhitha Pallapothula®,
Akshay Vyas', Jikai Wang', Qifan Zhang', Vasundhara Komaragiri',
Eric Ragan} Nicholas Ruozzi', Yu Xiang', and Vibhav Gogate’

ABSTRACT

Following step-by-step procedures is an essential component of various activities
carried out by individuals in their daily lives. These procedures serve as a guiding
framework that helps to achieve goals efficiently, whether it is assembling furniture
or preparing a recipe. However, the complexity and duration of procedural activities
inherently increase the likelihood of making errors. Understanding such procedural
activities from a sequence of frames is a challenging task that demands an accurate
interpretation of visual information and the ability to reason about the structure of
the activity. To this end, we collect a new egocentric 4D dataset CaptainCook4D
comprising 384 recordings (94.5 hours) of people performing recipes in real kitchen
environments. This dataset consists of two distinct types of activity: one in which
participants adhere to the provided recipe instructions and another in which they
deviate and induce errors. We provide 5.3K step annotations and 10K fine-grained
action annotations and benchmark the dataset for the following tasks: supervised
error recognition, multistep localization, and procedure learning ﬂ

1 INTRODUCTION

Remember when you prepared your favorite meal after a long day and forgot to add that crucial
ingredient and then lost appetite after a few bites? Such scenarios are quite common because
performing long-horizon step-by-step procedural activities increases the probability of making errors.
These errors can be harmless, provided they can be rectified with little consequence. Nevertheless,
when the procedures in question pertain to the medical field or complex chemical experiments, the
cost of errors can be substantial. Therefore, there is a pressing need to build Al systems that can
guide users in performing procedural activities [10]].

A key problem we need to solve in order to build such Al systems is procedural activity understanding,
a challenging and multifaceted task that demands interpreting what is happening —specifically,
determining whether the person is following the procedure correctly or making an error, anticipating
what will happen, and planning the course of action to accomplish the goal. For a system to interpret
what is happening, it needs to recognize and segment actions while assessing the current state of the
environment [[11} 13 42]161}164]. To anticipate future events, the system should be able to predict
actions at the beginning of the interaction or even beforehand [7, (18,43, 51} 51, 166]. On the other
hand, planning a sequence of actions requires the system to understand the possible outcomes of
these interactions [4} 32} 136]. Several datasets have been introduced to facilitate understanding of
procedural activity. Most of these datasets contain only normal videos of humans performing correct
procedures. For an Al system to recognize errors in human procedures, datasets with error annotations
are very necessary.

In this work, we present a novel dataset to assist Al systems that solve the procedural activity
understanding task, focusing specifically on improving their ability to recognize and anticipate errors.
We selected cooking as a domain that is sufficiently complex and encompasses different types of

*Corresponding Author

TThe University of Texas at Dallas

#The University of Florida

!website: https://captaincook4d.github.io/captain-cook/

https://captaincook4d.github.io/captain-cook/

Table 1: Ours vs Current Procedural Datasets (with and without errors) Our dataset not only enhances
the study of tasks outlined in procedural activity datasets in existing literature but also enables a systematic
investigation of errors occurring during the performance of procedural activities.

Errors ‘ Dataset Name ‘ Domain ‘ Ego ‘ Depth ‘ Recorded ‘ Error Labels ‘ Errors Type ‘ Videos ‘ Hours ‘ Tasks

YouCook2[67] Cooking X X X - - 2000 176 89

50 Salads [57] Cooking X - - 50 4.5 2

« EGTEA Gaze+ [39. Cooking X 86 29 7
MPII Cooking 2 [52] Cooking X X 273 27 67
EgoProceL [1 Assembly x 329 62 16
Breakfast [38 Cooking X X 1712 71 10
EgoTV [49] Simulated X Intentional 7673 168 540
Assembly101 [17] Toy Assembly X Partial* Unintentional 447 53 101

CSV |41 Chemistry Lab X X X Intentional 1940 11.1 14
HoloAssist [60] Assembly* Unintentional 2221 166 350
IndustReal [53] Toy Assembly Int. and Unint. 84 5.8 36

ATA [25] Toy Assembly X Intentional 1152 24.8 3

| CaptainCookdD (Ours) | Cooking | | | | | Int. and Unint. | 384 | 945 | 24

errors that are compounding in nature and completely alter the current state of the environment with
no point of return. We decided to capture data from an egocentric view despite ego motions because
it helps minimize occlusions more effectively than third-person view videos.

This paper makes the following contributions: 1) We collected an egocentric 4D dataset that features
individuals following recipes in kitchen settings. Our dataset includes two distinct types of activities:
one where the participants precisely follow the given recipe guidelines and another where they
deviate, making errors. 2) We provide annotations for (a) Start/End times for each step of the recipe,
(b) Start/End times for each fine-grained action/interaction for 20% of the collected data, and (c)
Categorize and provide a detailed description of the error performed by a participant which enabled
us to gather a comprehensive overview of different error types and their concise explanations. 3)
We provide baselines for the following procedure understanding tasks: supervised error recognition,
multi-step localization and procedure learning.

2 RELATED WORK

There has been a significant increase in procedural datasets with errors (refer to Table [I)). While they
all address errors during assembly and disassembly, we focus on cooking activities. In assembly tasks,
the shapes and colors of the objects remain constant. However, in cooking, the shapes and colors of
ingredients evolve continuously. This requires an adjustment to ongoing transformations in shape and
color, making cooking a more intricate activity. Four key features distinguish our dataset: (1) Domain
(2) Environment: Unlike lab environments, we collect our dataset in real-Kitchen environments. (3)
Multimodal capabilities, and (4) Error diversity. In this section, we elaborate on how our dataset
is particularly relevant to the various tasks of interest.

Error Recognition. Given a video clip, error recognition involves identifying the errors present in
the clip. This task was initially introduced as mistake detection by Assembly-101 [17] and proposed a
3-class classification of the performed procedure to classify the clip as correct, mistake, or correction.
Anomaly detection, while closely related to error recognition, differentiates itself by using static
cameras and backgrounds to identify unusual or abnormal behavior. Our dataset, which encompasses
a variety of error types, including timing, preparation, temperature, technique, and measurement
mishaps, provides researchers with a comprehensive view of error patterns in diverse situations.
Cooking is a task that involves continuous changes in the shape and color of ingredients, unlike
assembly tasks that usually lack variation. This unique characteristic of cooking activity makes our
dataset particularly valuable for developing error recognition methods applicable to procedural tasks
in the medical sector or that involve performing chemical experiments.

Temporal Action Localization (TAL) aims to identify temporal boundaries in extended videos and
classify each action instance. In general, TAL methodologies fall into two categories: two-stage and
single-stage approaches. The two-stage method first generates action proposals and then classifies
these actions. On the contrary, the single-stage approach conducts simultaneous action localization
and classification. Several datasets, such as ActivityNet [16], THUMOS14 [35], Charades [56],

MultiTHUMOS [63]], AVA [28]], EPIC-KITCHENS [7]], and Ego4D [27]], have significantly advanced
the field of TAL. While our dataset may be smaller in comparison, it offers a unique feature: it
includes both normal and erroneous actions. This makes it especially valuable for evaluating the
robustness of TAL methods in handling actions with deviations.

Procedure Learning is a two-part process in which all video frames are first segregated into K
significant steps. Then, a logical sequence of the steps necessary to complete the task is identified
[2, 13, 14} 133) 154, 168]. Existing procedural activity datasets such as CrossTask [69], COIN [38] are
predominantly third-person view videos. In this light, the EgoProceL dataset [1] was compiled from
videos of CMU-MMAC [8]], EGTEA [20]], EPIC-Tents [34]], MECCANO [48]]. We observe that our
dataset features a higher average step length, which poses a substantially more challenging problem
for algorithms developed using existing egocentric procedure learning datasets.

3 DATA COLLECTION

AL

(c) HoloLens2
3D Hand Joints

(f) HoloLens2 camera

(a) HoloLens2 and GoPro (b) Participant N
trajectory

(d) HoloLens2 Depth (e) HoloLens2 RGB

Figure 1: (a-b) display the sensor configuration for recording that includes a GoPro mounted over a
HoloLens and a participant making the recipe Cucumber Raita, and (c-f) display the synchronized
data captured by the HoloLens2 including 3D hand joints, depth, RGB and camera trajectory.

Sensors. In order to gather activity data, we employed a combination of the GoPro Hero 11 camera,
which was mounted on the user’s head, and the HoloLens2 device. To facilitate data collection
from HoloLens2, including its depth sensor, IMU (Inertial Measurement Unit), front RGB camera
and microphone, we used a custom tool developed by [9]]. Furthermore, we capture the processed
head and hand tracking information provided by the HoloLens2 device. We offer data recorded
from HoloLens2 and GoPro, presented separately for each recording El The GoPro provides larger
field-of-view images than HoloLens2. Figure|[T]illustrates the data captured from HoloLens2.

Recipes. We curated a selection of 24 cooking recipes sourced from WikiHow (Table[), specifically
focusing on recipes with a preparation time of 30 minutes or less. These recipes encompassed a wide
range of culinary traditions, showcasing the diversity of cooking styles in various cuisines. Our main
goal was to identify the possible errors that could occur when using different cooking tools to prepare
recipes sampled from various cuisines.

Task Graphs. A task graph visually represents the sequential steps required to complete a given
recipe. Each node in the task graph (for a recipe) corresponds to a step in a recipe, and a directed edge
between a node = and a node y in the graph indicates that = must be performed before y. Thus, a task
graph is a directed acyclic graph, and a topological sort over it represents a valid completion of the
recipe. In order to construct task graphs for our collection of 24 WikiHow recipes, we meticulously
identified all the essential steps involved and established their inter-dependencies, thereby establishing
a topological order of tasks (see project website|for details about constructed task graphs).

3.1 ProTOCOL

Our dataset was compiled by 8 participants in 10 different kitchens. Each participant selected
ten recipes and recorded, on average, 48 videos in 5 different kitchens. During the filming, all
participants were required to ensure that they were alone in the kitchen and remove any items that
could potentially identify them, such as personal portraits, mirrors, and smartwatches with portraits.
The participants used a GoPro and a HoloLens?2 to record and monitor their footage. Each participant
was provided with a tablet-based recording interface accessible through a web browser. To ensure

Note that the data from GoPro and HoloLens2 are not synchronized.

https://github.com/Error-Dataset

PREPARATION ERRORS:

Step: In recipe Mug Cake, Incorrect usage of utensils such as
Whisk Batter a spoon, tablespoon, and hand to
whisk batter
Step: In recipe Cucumber Raita, :

Cucumber is sliced vertically, sliced

Chop into pieces horizontally and cut improperly

Step: In recipe Spicy Tuna
Avacado Wraps,
Top lettuce leaves with tuna
mixture

Incorrect order is followed where
avacado is added after topping the
leaves with the mixture

Step: In recipe Scrambled Eggs,

Different quantity of garlic cloves
Peel 2 garlic cloves

(1.1, and 3 respectively) are peeled.

Figure 2: Error Categories: Each row displays frames captured from different recordings of recipes,
highlighting both correct and erroneous executions, with a focus on specific types of errors.

optimal video quality, we asked participants to configure the GoPro camera so that it captures videos
in 4K resolution at 30 frames per second. The HoloLens2 device was programmed to stream RGB
frames at a 360p resolution and a rate of 30 frames per second. It also streamed depth frames in
Articulated Hand Tracking mode, referred to as “depth_ahat” mode. The device also streamed three
separate IMU sensor data streams and spatial data, including head and hand poses.

3.1.1 NORMAL RECORDINGS

A recording is classified as a normal recording when it is captured as the participant accurately
follows the procedure described in the recipe. Each participant in the study is assigned to select a
recipe from the available options, which are scheduled within a kitchen setup using the recording
interface. Subsequently, they are presented with one of the pre-established topological orders of
the recipe, as determined by the previously constructed task graphs. The participants then proceed
to follow the provided task graph, starting from the beginning and progressing through each step
according to its dependencies and designated time.

3.1.2 ERROR RECORDINGS

A recording is termed an error recording when it is captured while the individual deviates from the
recipe’s procedure, thereby inducing errors. Following the terminology used in scientific disciplines
such as neuroscience [3] and chemistry, we will refer to deviations from procedures as errors. Note
that the term “errors” used here is equivalent to what is commonly called “mistakes” in the Al
community (cf. [I7]]). We present the count and duration statistics of recordings in Fig. 3]

20.0 Normal Recordings ~ Count and duration statistics of normal and error recordings

17.5 | mmm Error Recordings

Normal Recordings Duration(Hr)
mmmError Recordings Duration(Hr)

bt gk VR

Recordings Count
<~ B K G
o o °

°

I

LI
Recordings Duration(Hr)

B T S R R R N I I R S ¥ & P&
FF S S TS T SIS
& RS & N & & ¢ S & £y &F
FOSEIC R S R &S & ¢ F & & O
& L s a,w‘f & & S o & &
& & &
R « @

Figure 3: Count and duration (in hours) statistics of normal and error recordings.

- -
N e
, ’
< PREPARATION ERROR
8 a
&4 - MEASUREMENT ERROR
= &‘ ORDER ERROR

4 — 4 * @ i exror
Add1/4 Add1/2
Add1 e goonof A e At gy tempen —— | e a2 s conbineal @ recHviaut exvor
STEPS the bow! to the bow i smoot R towhisked i the bowt @ eveeratuRe eRRoR
bowl
@ rssinc stee

ERRORS Add scallions Use zucchini

== | |
l\ AN\ SO 2 | W
i ﬁﬁ /g ﬂ g

Figure 4: Displays the timeline of recipe steps and recorded errors while preparing the recipe
Cucumber Raita. Three of four errors were intentional, but the participant unintentionally missed the
Peeling step. In annotations, we provide step start and end times, a description, and a categorization
of the error performed during that step.

o

Following 24]), we classified common errors performed during a cooking activity into the
following categories: (1) Preparation Error, (2) Measurement Error, (3) Technique Error, (4) Timing
Error, (5) Temperature Error, (6) Missing Steps, and (7) Ordering Errors (see Figure @) We also
provide visual illustrations in Figure 2} showcasing the categorization of videos into normal and error
recordings.

Error Induction. It has been a common practice to use scripted videos for activity understanding [33].
Inspired by it, we devised and implemented three strategies for participants to follow. Each participant
was asked to pick a strategy for performing the recipe in a particular environment and was accordingly
guided to prepare for their performance. We list the strategies presented to the participants here
(1) Pre-prepared error scripts: In this strategy, participants were given pre-prepared error scripts
with missing steps and ordering errors. (2) Prepare error scripts: Once the participants chose this
strategy, they received a web-based interface to create an error script for each error recipe recording
and displayed the modified error script on a tablet, allowing participants to perform according to
their modified error scripts (3) Impromptu: During the later stages of the recording process, we
implemented a strategy where participants were asked to induce errors while performing the recipe.
Following the completion of each recording, participants were given access to a web-based interface
to update errors they made during each step. Although we developed a process to capture intentional
errors, due to the complex nature of cooking activities and the lack of experience of the participants
in cooking, many induced errors were unintentional (Figure] presents one such example).

3.2 DATA ANNOTATION

Our annotations comprise (1) Annotations for coarse-grained actions or steps, providing the start and
end times for each step within the recorded videos. (2) To support learning semi/weakly supervised
approaches for action recognition and action anticipation, we have provided fine-grained action
annotations for 20% of the recorded data. These annotations include the start and end times for each
fine-grained action. (3) We have also categorized and provided error descriptions for the induced
errors. These error descriptions are linked with the respective steps in the provided annotations,
enabling a comprehensive understanding of the errors. Figures [] [T9] describe the granularity of
different categories of annotations provided. To ensure high-quality annotations for our data, we
ensured that each recording was annotated by the person who recorded the video and then reviewed
by another. The reviewer was asked to double-check that all errors made by the participant in the
recording were included in their corresponding step annotations.

Coarse-Grained Action/Step Annotations. We designed an interface for performing step anno-
tations in Label Studio El Each annotator is presented with this interface to mark the start and end
times of each step. Our steps are significantly longer than a single fine-grained action and encompass
multiple fine-grained actions necessary to perform the described step. For example, to accomplish

3https://labelstud.io/

40

u

]

Video duration statistics

Step duration statistics

Count
a
8
3

30 a

9 18
Video Duration (Minutes)

Count
=

ﬂﬁ

0

e
N HH Hﬂl’lﬂﬁﬁ%ﬁ‘%ﬁ# T e
50

100 150 200 250 300 350 400
Step Duration (Seconds)

WL ~a;.|:||_|H
Figure 5: Displays video and step duration statistics of our dataset

the step { Chop a tomato}, we include the following (1) Pre-conditional actions of {opening refriger-
ator, grabbing a polythene bag of tomatoes, taking a tomato, placing the tomato on cutting board,
close fridge} (2) Post-conditional actions of {placing down the knife, grabbing the polythene bag of
tomatoes, open fridge and place the bag in the fridge}. Figure [5| presents video and step duration
statistics compiled from step annotations of the dataset.

Error Count by Recipe

Preparation Error421 11 13 5 15 29 12 7 42 13 10 8 13 26 20 14 23 12 2 40 17 25 24 120
Measurement Error424 30 10 4 11 12 15 10 7 4 19 29 12 13 15 15 10 13 7 17 12 25 11
Order Error431 17 30 19 21 23 15 24 5 16 E 31 & 27 45 28 6 14 15 11 100
Timing Error418 16 4 10 10 9 10 0 0 61012 0 9 1411 4 4 6 5 8 0 6 80
Technique Error {14 24 5 18 17 13 12 19 19 23 21 46 23 28 31 31 25 19 12 26 16 26 30 - 60
Temperature Error-5 3 0 0 4 0 5 01 3 9 9 06 6 41 2 2 010 2 - 40
Missing Step416 10 4 8 7 9 10 20 7 17 19 22 11 6 10 8 15 13 8 20 6 25 10 _20
Oher{41 o0 1 0 0 0 0 0 0 0 2 0 1 0 0 O 0 O O O 01 0
— T T T T T T T T T T T T T T T T T T T -0
S 2 ‘&Z ey & q\o@,\o s & <\\.,a\ = ey &@ﬂ‘@&@\\ & \;\o:: ngs‘@ 4‘9\
o *:Ea”:,’z\"*\ e*i;\“i\dsﬁ A f‘?&i’;@@v" L d“ﬁ;\‘%w'e‘z

Figure 6: Displays frequency of each type of error in the recordings for a recipe.

Error Category Annotations. Following each recording, participants were also asked to categorize
any errors performed in each step of the recording based on a set of guidelines. We ask participants
to broadly classify an error as a (1) Preparation Error when they use soiled/wrong ingredients or
use different tools, (2) Measurement Error when they use wrongly measured ingredients, (3) Timing
Error when they perform a step in shorter or longer duration than what is prescribed (e.g. Microwave
for 3 minutes instead of 30 seconds) (4) Temperature Error when they set higher/lower power levels
in microwave or higher/lower heat levels on a stove than what is prescribed (5) Missing Step when
they omit performing a step (6) Technique Error when they perform the required action incorrectly,
leading to a wrong outcome than expected. (7) Order Error when they execute steps out of the
intended sequence either intentionally or unintentionally. We compile all error categorization and
description annotations and present them in Figures [6]and 20]

4 BASELINES

We provide baselines for the following tasks (1) Error Recognition, (2) Multi-Step Localization, and
(3) Procedure Learning. In our approach to Error Recognition and Multi-Step Localization tasks, we
utilized state-of-the-art pre-trained models originally developed for video recognition tasks to extract
relevant features. Once these features were extracted, we trained distinct heads in an activity-agnostic
manner, each tailored to address a specific task. We used 3D-ResNet [29], SlowFast [22], X3D [21]],
VideoMAE [59] and Omnivore [26]] as our backbones for extracting features. We trained all our
models on a single NVIDIA A40 GPU.

4.1 ERROR RECOGNITION

Utilizing error annotations provided, we propose three tasks, namely (1) Supervised Error Recognition,
(2) Early Error Recognition and (3) Error Category Recognition. As baselines, we set up each task
as an instance of a variant of supervised binary classification and evaluate our trained models using
standard metrics for binary classification such as precision, recall, F1 score and AUC score.

4.1.1 SUPERVISED ERROR RECOGNITION

Description. In supervised error recognition, we

aim to identify errors in a video segment de- Table 2: Supervised Error Recognition

picting a procedural step. The presence of di-

verse cascading and non-cascading errors in the Baseline Precision Recall F1Score AUC Score

proposed dataset makes this setting challenging. 3D ResNet 7674 1454 2444 0.78

(summarized in Figures[6]and 20). We provide ~ Slowfast 6442 29.52 4048 078
baseli here we catesoriz h sten int X3D 5278 1674 2542 0.72

a baseline, where we calegorize each step nto VideoMAE 7534 257 3833 0.82

one of two classes {error, normal} and present Omnivore 6824 4449 53.87 0.84

results in Table

Implementation. Firstly, We chose split by recordings as the criteria (see [F-I) to construct the train,
validation and test sets of recordings. Then we compiled annotated video segments corresponding to
the steps of the procedural activities to prepare a comprehensive dataset of video segments, which
includes 4026 training segments (with 1283 errors), 531 validation segments (179 errors), and 743
testing segments (227 errors). We utilized the error categorization labels of annotated video segments
to generate binary class labels for the task.

We rely on visual cues identified by pre-trained video recognition models and use the extracted
features to train models for the supervised error recognition task. Specifically, we first divided
each video segment into 1-second sub-segments and extracted corresponding features utilizing the
pre-trained models. Then, we used the extracted features to train a neural network with a single
hidden layer with ReLU activation and a sigmoid output node. We assigned the majority class among
the sub-segments to the entire segment during inference. We used the Adam optimizer with a learning
rate of 0.001 to train all the classifiers. We observe that our Omnivore-based model achieves the best
recall, F1 and AUC scores. We also present qualitative results of trained classifiers in figure[7]

Slice 1/4 medium onion into pieces Pour a small amount of water into the Cut the English Muffin into two pieces
filter to wet the grounds with a knife Spread jelly over peanut butter

Chop instead of slicing Use milk instead of water Spill while pouring Cut into unequal pieces
MODEL ERROR MODEL ERROR MODEL ERROR MODEL ERROR
3D ResNet 0.19 3D ResNet 0.39 3D ResNet 0.29 3D ResNet 0
VideoMAE 0.38 VideoMAE 0.43 VideoMAE 0.21 VideoMAE 0.14
SlowFast 0.24 SlowFast 0.47 SlowFast 0.35 SlowFast 0.08
X3D 0.25 X3D 0.37 X3D 0.18 X3D 0.46
Omnivore 0.94 Omnivore 0.59 Omnivore 0.29 Omnivore 0.01

(q) Technique Error (b) Preparation and Technique Errors (c) Technique Error (d) No Error

Figure 7: Displays error probabilities predicted by trained classifiers on 4 segments of the video (3 error segments
and 1 normal segment) sampled from the compiled test dataset. Although our omnivore-based model outperforms
the rest in classifying error segments, we note that all models are adept at distinguishing normal video segments.

Remark. The low scores indicate the complexity of the task and call for developing more sophisti-
cated approaches. We conjecture that to improve these scores significantly, one must employ methods
that seek to (semantically) understand the context, meaning, and cause of various errors

*We also developed methods for solving the zero-shot error recognition task (namely, training data contains
only normal recordings and test data has both error and normal recordings) by adapting anomaly detection
methods in the literature. However, we found that these methods perform poorly and are only slightly better than
random (results are presented in the supplement). These results suggest that zero-shot error recognition is quite
challenging and will require methods that seek to understand the context and meaning of errors.

4.1.2 EARLY ERROR RECOGNITION

Description. Inspired by the task of Early Action

Prediction, we propose the task of Early Error Table 3: Early Error Recognition

Recognition. In this task, we aim to identify er-

rors in video segments when only a partial initial Baseline Precision Recall F1Score AUC Score

segment of a step in a procedural activity is ob- 3DResNet 7273 3.52 6.72 0.77

served. We trained and evaluated models when Slowfast 7241 925 164 075
o . X3D 5833 308 586 0.73

only the initial half of the video segment was ob- VideoMAE 70 654 1197 0.82

served. We re-use the comprehensive dataset of Omnivore 72.09 13.66 22.96 0.83
video segments compiled in the supervised error
recognition task to train a prediction head that
consisted of a neural network with a single hidden layer with ReLU activation and a sigmoid output
node. We present the results obtained on the evaluation of trained models in Table [3|and observe
that the results are aligned with those obtained for supervised error recognition as shown in Table [2]
Notice that although the AUC scores are roughly the same for both tasks, the F1 scores are always
lower for early error recognition because recall is low, indicating that recognizing errors with less
information is significantly more challenging.

4.1.3 ERROR CATEGORY RECOGNITION

Description. Leveraging the error category annotations, we propose the task of error category
recognition, where we aim to recognize and categorize errors in video segments corresponding to
steps in procedural activities. We provide a baseline by setting up this task as an instance of a
one-vs-all supervised binary classification.

Implementation. We re-use the comprehensive dataset of video segments compiled for error
recognition to construct datasets for this task. Specifically, we construct 5 datasets by varying label
assignment to video segments such that each dataset constitutes video segments belonging to a
particular error category as members of the positive class and all other segments, including the ones
with no errors, as members of the negative class. For each dataset, we trained a neural network with a
single hidden layer and a sigmoid output node using the features extracted for the video segments
and presented results in Table] Although the models have achieved high accuracy scores, a closer
examination of the recall values reveals that they have limitations in accurately categorizing errors.

Table 4: Error Category Recognition

Method Name Technique Error Preparation Error Measurement Error Temperature Error Timing Error

Ace. Prec. Rec. F1 Acce. Prec. Rec. F1 Ace. Prec. Rec. F1 Acc. Prec. Rec. F1 Acc. Prec. Rec. F1

3D ResNet 88.56 2791 18.18 22.02 89.77 930 9.76 952 8843 698 6.12 652 9314 000 000 000 9152 698 1154 8.70
Slowfast 8250 19.23 30.30 23.53 8345 1058 2683 15.17 8210 9.62 2041 13.07 8520 096 1250 1.79 84.12 577 23.08 9.23
X3D 8331 972 10.61 10.14 87.21 1250 2195 1593 8533 833 1224 992 8923 0.00 000 000 8762 417 1154 6.12
VideoMAE 8439 19.18 2222 2059 86.99 13.70 27.03 18.18 8439 822 1277 10.00 88.58 1.37 1250 247 87.14 6.85 19.23 10.10
Omnivore 7820 17.57 39.39 2430 80.22 14.19 5122 2222 7833 1216 3673 18.27 79.81 203 3750 385 79.00 6.08 34.62 1034

4.2 MULTI STEP LOCALIZATION

Description. Given an untrimmed, long video that captures a procedural activity, multi-step local-
ization aims to determine each step’s start and end frames and classify them. We have framed the
supervised multi-step localization task as an instance of a supervised temporal action localization
(TAL) problem. This setup is particularly challenging as our dataset encompasses both normal actions
and those with deviations, termed "Technique Errors" (refer to @]), and the duration of steps in our
dataset exceeds that of actions in benchmark datasets used for TAL (Table[I0). We employ standard
metrics used in TAL methods to evaluate trained models and present results. These metrics include
temporal Intersection over Union (Z;), mean Average Precision (mAP), and Recall at x (R@x).

Implementation. Firstly, we construct three datasets with varying train, validation and test sets
of recordings, using three criteria, namely recording environments (&), recording persons (P) and
recordings (R) (as described in . We then extract features for each dataset and train an Action-
Former [65] head for multi-step localization. During inference, we evaluated trained models on three
variants of test sets, where the first variant included the entire test set (7) while the second and third

variants included filtered test sets, with one comprising only normal recordings (7,,) and the other
only error recordings (7). We present the results for the first variant in Table[5]and present the results
for the second and third variants in Table[6] We modified the default configuration file and set the
following hyper-parameters: num_classes to 353, input_dim to 1024, max_seq_len to 4096, learning
rate to 0.0001 and trained all 12 models for 16 epochs.

Table 5: Multi-step localization

B D 7, =0.1 Z; =03 Z: =05
mAP R@1 R@5 mAP R@l1 R@5 mAP R@1 R@5
£ 2598 5482 7759 2375 4838 7219 1959 3844 61.87
3DResnet P 2929 63.07 8896 2771 56.60 8475 2321 46.79 76.86
R 2939 61.14 8541 27.89 5582 8217 2397 4654 7329
£ 2768 5573 7745 2551 4898 7090 21.09 37.82 60.58
Slowfast P 3277 6322 9043 3121 5882 86.82 2725 50.70 79.49
R 3290 6397 8929 3147 5926 8532 27.89 51.62 7727
£ 2812 5176 73.00 2638 46.16 67.87 2135 37.12 5781
VideoMAE P 3886 64.86 84.05 3741 6032 80.63 3224 5146 7188
R 3744 63.08 8090 3511 5730 7738 30.76 49.19 69.43
£ 4040 6751 87.69 3832 6231 82.82 3341 53.01 7285
Omnivore P 4816 7596 9341 4582 7034 90.51 41.16 6200 8473
R 4481 7371 9334 4276 68.14 89.82 37.19 56.93 81.86

Table 6: Multi-step localization evaluated on test sets with only normal recordings and only error recordings.

B D T 7, =0.1 7;=03 Z; =05
mAP R@1 R@5 mAP R@1 R@5 mAP R@1 R@5

Tn 214 3951 5439 20.07 3569 5074 17.1 2936 453
T 974 1531 232 8.31 12.69 2145 622 9.08 1657

3D ResNet Tn 1957 3593 4939 1868 332 4744 1599 2758 4322

P Te 1382 27.14 39.57 1294 234 3732 1088 1921 33.64
R Tn 2003 3518 4757 19.15 3234 46.09 16.69 27.04 41.52

Te 1322 2596 37.84 1248 2347 3607 108 19.5 3176
P Tn 2248 3957 5414 2086 3597 50.51 17.2 2828 4475

T. 1011 1616 23.32 9 13.02 2039 7.53 9.54 15.83

Slowfast Tn 2312 3655 5045 2209 3409 49.11 19.24 2893 4512
Te 1478 26.68 3997 1414 2473 3771 1256 21776 3437

Tn 2278 3646 50.1 2203 3435 4813 19.62 30.08 44.88
Te 1411 2752 39.19 1334 2491 3719 119 2153 3239

Tn 2444 3822 5248 2297 3477 4951 18.67 2857 42.68
T 753 1354 2052 693 114 1836 563 855 1513

VideoMAE T. 2678 3743 4628 2568 3479 446 22.02 2943 39.81

P T 1698 2743 3776 1646 2553 36.03 14.64 2203 32.07
R Tn 2627 3715 4693 2471 3406 4503 21.51 2936 4044

Te 1543 2594 3397 1444 2323 3235 1296 19.83 28.99
P Tn 3465 4791 60.63 33.06 4477 5836 2859 3838 519

Te 1251 19.6 2706 11.66 17.54 2445 994 1463 2096

Omnivore Tn 325 4445 5247 31.13 4153 5091 2839 37.03 4797
Te 2128 31.51 4093 20.12 2881 39.6 18.08 2496 36.77

Tn 3022 4243 5211 2894 3947 5049 2515 32.65 46.51
Te 1954 3128 4124 184 28.66 3933 1627 2428 3535

We observe that among all the feature extractors used as backbones for training the ActionFormer
head, Omnivore performs much better. In Appendix [F.3] we present further benchmarking results
where we perform an ablation study on the performance of models trained using extracted features of
varying lengths. All the models perform significantly worse on test sets constructed using only error
recordings compared to the ones constructed using normal ones.

SPICED HOT CHOCOLATE DRESSED UP MEATBALLS MICROWAVE EGG SANDWICH RAMEN
||| GROUND TRUTH

||| ~i PREDICTED

NORMAL
RECORDING V-I.

i : N] £ cconarum
TR (I

ERROR

RECORDING | -I

Figure 8: Qualitative results for multi-step localization.

We present qualitative results in figure[8] which displays multi-step localization results obtained when
the omnivore-based model is evaluated on normal/error recordings sampled from 4 recipes namely
Spiced Hot Chocolate, Dressed Up Meatballs, Microwave Egg Sandwich and Ramen.

4.3 PROCEDURE LEARNING

Description. Given long untrimmed videos of procedural activities where the sequences of steps
can be performed in multiple orders, we aim to identify relevant frames across videos of activity and
estimate the sequential steps required to complete the activity. Thus, the task entails the identification
of key steps and their sequence to complete an activity. To benchmark procedure learning, we used
normal recordings from our dataset and assessed the performance of recently proposed methods
(1L [12].

Implementation Details. We followed the setup as described in the work of [1] and trained the
embedder networks for each recipe. Specifically, we train two networks, one using the Cycleback
Regression loss (C) proposed by [[12] and the other using a blend of two loss functions: Cycleback
Regression loss (C) and Contrastive - Inverse Difference Moment loss (¢’) as proposed by [1]]. The
combined loss function is expressed as C + A x %, where A is a hyperparameter. (we set it to
0.5). We note that we only train embedder networks using loss functions from these methods and
retain the Pro-Cut Module for assigning frames to key steps. We adhered to the hyperparameter
settings specified in the original paper to train the embedder network. Utilizing an A-40 GPU, the
entire training process was completed in approximately three hours for each recipe. The results are
presented in Table [/} we noticed a significant decline in performance compared to the results from all
other datasets reported in the paper [1l]. Given that our dataset features videos with notably longer
key step lengths (as indicated in Table[I0), we attribute this drop in performance primarily to this
distinguishing characteristic.

Table 7: Procedure Learning. The results showcase the performance of models trained using
methods M [12] and M [1]. Where M; employs Cycleback Regression Loss (C) and M;
employs a combination of both Cycleback Regression Loss (C) and Contrastive - Inverse Difference
Moment Loss (%). We note that we only train embedded networks using loss functions from these
methods and retain the Pro-Cut Module for assigning frames to key steps. Here, P represents
precision, R represents recall, and I represents IOU.

. Random M Mo
Recipe
P R T P R T P R A

BlenderBananaPancakes 740 3.83 226 12.65 9.50 5.16 1554 9.96 5.72
BreakfastBurritos 9.66 4.04 259 1872 1146 6.77 1658 10.77 5.87
BroccoliStirFry 421 381 1.73 9.92 9.11 3.93 8.20 8.10 3.85
ButterCornCup 837 391 216 13.82 11.85 579 15.07 1230 5.82
CapreseBruschetta 9.34 396 252 2555 12.89 7.52 2053 9.09 5.59
CheesePimiento 9.10 3.87 241 1974 1048 644 1749 1032 6.26
Coffee 6.54 3.87 217 13.68 991 549 1576 10.25 5.63
CucumberRaita 890 3.64 244 13.58 792 5.14 16.15 9.97 6.09
DressedUpMeatballs 728 3.80 226 1520 10.80 6.05 17.59 1027 5.81
HerbOmeletWithFriedTomatoes 6.82 405 198 14.66 1498 550 1464 1134 6.29
MicrowaveEggSandwich 881 398 261 1625 1044 6.16 19.16 11.29 6.99
MicrowaveFrenchToast 9.03 374 249 16.82 790 5.07 17.31 8.82 5.66
MicrowaveMugPizza 7.53 390 238 12.82 9.78 527 12.69 9.18 5.18
MugCake 545 400 212 16.12 1295 6.87 10.32 8.85 4.40
PanFriedTofu 535 397 154 8.86 10.39 3.75 934 1244 387
Pinwheels 6.54 428 2.13 1358 1196 592 16.08 13.06 7.05
Ramen 6.85 4.12 1.87 11.09 997 448 1290 1092 5.07
SautedMushrooms 6.08 3.81 2.02 1506 1222 6.16 19.54 13.83 742
ScrambledEggs 474 395 189 11.11 11.08 527 11.70 10.96 5.27
SpicedHotChocolate 14.08 3.82 3.09 29.82 10.58 849 29.79 11.04 8.74
SpicyTunaAvocadoWraps 6.25 390 221 1562 1052 5.67 1247 9.61 525
TomatoChutney 545 3.89 1.85 1225 10.68 542 1225 10.68 542
TomatoMozzarellaSalad 10.88 391 238 19.77 1021 6.01 1920 1048 5.96
Zoodles 791 408 222 1832 12.80 6.37 1832 12.80 6.37
Average 7.61 392 222 1562 10.85 5.78 1578 10.68 5.82

10

5 DISCUSSION, SUMMARY AND FUTURE WORK

In this paper, we have introduced a large egocentric dataset for procedural activities. Our dataset
consists of synchronized egocentric views, audio, and depth information specifically designed for tasks
such as Temporal Action Segmentation, 3D activity analysis, Procedure Learning, Error Recognition,
Error Anticipation, and more. Additionally, we have provided benchmarks for error recognition
and Procedure Learning. While current methods have yielded promising outcomes, they continue
to struggle to tackle these challenges adequately with satisfactory results, as demonstrated by our
experimental assessment. This indicates the need for further exploration in this domain.

Limitations. We intend to capture deviations observed while performing a procedural activity from
an egocentric view. First, we note that this type of data cannot be compiled from crowd-sourced
platforms. This left us to capture participant data while performing procedural activities. Second, by
the nature of the problem, errors that occur when performing procedural activities are combinatorial
and can have a compounding effect. Thus, our work has the following limitations: (1) For each
activity, the errors captured and presented in the dataset form a subset of the whole combinatorial
space; (2) Capturing 4D data in real kitchen environments posed logistical and equipment training
challenges. As a result, we were compelled to limit the data collection to a specific geographic area.
(3) Compared to datasets curated from the crowd-sourced platforms used for tasks like action/activity
recognition, temporal action segmentation, etc., the presented work comprises fewer recipes.

Our work opens up several avenues for future work. First, an exciting direction is the extension of the
dataset to include activities from other domains. By incorporating tasks such as performing chemical
experiments or executing hardware-related activities (e.g., working with cars or computer parts), the
dataset can encompass a wider range of activities and provide insights into error patterns in diverse
real-world scenarios. Second, the dataset can be used to compare and develop methods for solving
various tasks such as transfer learning, semantic role labelling, video question answering, long video
understanding, procedure planning, improving task performance, reducing errors, etc.

REFERENCES

[1] Bansal, Siddhant, Arora, Chetan, and Jawahar, C. V. My View is the Best View: Procedure
Learning from Egocentric Videos. European Conference on Computer Vision, july 2022.

[2] Piotr Bojanowski, Rémi Lajugie, Francis Bach, Ivan Laptev, Jean Ponce, Cordelia Schmid, and
Josef Sivic. Weakly supervised action labeling in videos under ordering constraints. In David
Fleet, Tomas Pajdla, Bernt Schiele, and Tinne Tuytelaars, editors, Computer Vision — ECCV
2014, pages 628-643, Cham, 2014. Springer International Publishing.

[3] Chien-Yi Chang, De-An Huang, Yanan Sui, Li Fei-Fei, and Juan Carlos Niebles. D3TW:
discriminative differentiable dynamic time warping for weakly supervised action alignment and
segmentation. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019,
Long Beach, CA, USA, June 16-20, 2019, pages 3546-3555. Computer Vision Foundation /
IEEE, 2019.

[4] Chien-Yi Chang, De-An Huang, Danfei Xu, Ehsan Adeli, Li Fei-Fei, Juan Carlos Niebles, Juan
Carlos Niebles, and Juan Carlos Niebles. procedure planning in instructional videos. European
Conference on Computer Vision, 2019.

[5] Mathilde P. Chevignard, Cathy Catroppa, Jane Galvin, and Vicki Anderson. Development
and evaluation of an ecological task to assess executive functioning post childhood tbi: The
children’s cooking task. Brain Impairment, 11(2):125-143, 2010.

[6] Dima Damen, Hazel Doughty, Giovanni Maria Farinella, Sanja Fidler, Antonino Furnari,
Evangelos Kazakos, Davide Moltisanti, Jonathan Munro, Toby Perrett, William Price, Will
Price, Will Price, and Michael Wray. The EPIC-KITCHENS Dataset: Collection, Challenges
and Baselines. arXiv: Computer Vision and Pattern Recognition, April 2020. ARXIV_ID:
2005.00343 MAG ID: 3022491006 S2ID: 1badccbe4a3cbf8662b924a97bbeeal4fe2flac7.

[7] Dima Damen, Hazel Doughty, Giovanni Maria Farinella, Antonino Furnari, Evangelos Kazakos,
Jian Ma, Davide Moltisanti, Jonathan Munro, Toby Perrett, Will Price, and Michael Wray.
Rescaling Egocentric Vision: Collection, Pipeline and Challenges for EPIC-KITCHENS-100.
International Journal of Computer Vision, October 2021.

11

[8] Fernando De la Torre, Jessica K. Hodgins, Adam W. Bargteil, Xavier Martin, J. Robert Macey,
Alex Tusell Collado, and Pep Beltran. Guide to the carnegie mellon university multimodal
activity (cmu-mmac) database. In Tech. report CMU-RI-TR-08-22, Robotics Institute, Carnegie
Mellon University, April 2008.

[9] Dibene, Juan C. and Dunn, Enrique. HoloLens 2 Sensor Streaming. Cornell Univer-
sity - arXiv, November 2022. ARXIV_ID: 2211.02648 MAG ID: 4308505718 S2ID:
b19229b4f8667dae5017cae4df5¢37086332dal7.

[10] Bruce Draper. DARPA’s Perceptually-enabled Task Guidance (PTG) program, 2021.

[11] Dvornik, Nikita, Hadji, Isma, Pham, Hai, Bhatt, Dhaivat, Martinez, Brais, Fazly, Afsaneh,
and Jepson, Allan D. Graph2Vid: Flow graph to Video Grounding for Weakly-supervised
Multi-Step Localization. Cornell University - arXiv, October 2022.

[12] Debidatta Dwibedi, Yusuf Aytar, Jonathan Tompson, Pierre Sermanet, and Andrew Zisserman.
Temporal cycle-consistency learning. In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2019.

[13] Ehsan Elhamifar and Dat Huynh. Self-supervised Multi-task Procedure Learning from Instruc-
tional Videos. European Conference on Computer Vision, 2020.

[14] Ehsan Elhamifar and Dat Huynh. Self-supervised multi-task procedure learning from instruc-
tional videos. In Andrea Vedaldi, Horst Bischof, Thomas Brox, and Jan-Michael Frahm, editors,
Computer Vision - ECCV 2020 - 16th European Conference, Glasgow, UK, August 23-28, 2020,
Proceedings, Part XVII, volume 12362 of Lecture Notes in Computer Science, pages 557-573.
Springer, 2020.

[15] Ehsan Elhamifar and Zwe Naing. Unsupervised procedure learning via joint dynamic summa-
rization. International Conference on Computer Vision (ICCV), 2019.

[16] Bernard Ghanem Fabian Caba Heilbron, Victor Escorcia and Juan Carlos Niebles. Activitynet:
A large-scale video benchmark for human activity understanding. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 961-970, 2015.

[17] Fadime Sener, Dibyadip Chatterjee, Daniel Shelepov, Kun He, Dipika Singhania, Robert Wang,
and Angela Yao. Assembly101: A Large-Scale Multi-View Video Dataset for Understanding
Procedural Activities. Computer Vision and Pattern Recognition, 2022.

[18] Fadime Sener, Rishabh Saraf, and Angela Yao. Learning Video Models from
Text: Zero-Shot Anticipation for Procedural Actions. arXiv.org, 2021. S2ID:
3c0e77c5fb9e794336dec3872e686a91c0f653ee.

[19] A. Fathi, Xiaofeng Ren, and J. M. Rehg. Learning to recognize objects in egocentric activities.
In Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 11, page 3281-3288, USA, 2011. IEEE Computer Society.

[20] Alireza Fathi, Xiaofeng Ren, and James M. Rehg. Learning to recognize objects in egocentric
activities. In CVPR 2011, pages 3281-3288. IEEE, June 2011.

[21] Christoph Feichtenhofer. X3D: Expanding Architectures for Efficient Video Recognition, April
2020.

[22] Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, and Kaiming He. SlowFast Networks for
Video Recognition, October 2019.

[23] Torun G Finnanger, Stein Andersson, Mathilde Chevignard, Ggril O Johansen, Anne E Brandt,
Ruth E Hypher, Kari Risnes, Torstein B Rg, and Jan Stubberud. Assessment of executive
function in everyday life-psychometric properties of the norwegian adaptation of the children’s
cooking task. Frontiers in human neuroscience, 15:761755, 2021.

[24] Yael Fogel, Sara Rosenblum, Renana Hirsh, Mathilde Chevignard, and Naomi Josman. Daily
performance of adolescents with executive function deficits: An empirical study using a complex-
cooking task. Occupational therapy international, 2020:3051809, 2020.

[25] Reza Ghoddoosian, Isht Dwivedi, Nakul Agarwal, Chiho Choi, and Behzad Dariush. Weakly-
supervised online action segmentation in multi-view instructional videos. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 13780-13790,
2023.

12

[26] Rohit Girdhar, Mannat Singh, Nikhila Ravi, Laurens van der Maaten, Armand Joulin, and Ishan
Misra. Omnivore: A Single Model for Many Visual Modalities, March 2022.

[27] Kristen Grauman, Andrew Westbury, Eugene Byrne, Zachary Chavis, Antonino Furnari, Ro-
hit Girdhar, Jackson Hamburger, Hao Jiang, Miao Liu, Xingyu Liu, Miguel Martin, Tushar
Nagarajan, Ilija Radosavovic, Santhosh Kumar Ramakrishnan, Fiona Ryan, Jayant Sharma,
Michael Wray, Mengmeng Xu, Eric Zhongcong Xu, Chen Zhao, Siddhant Bansal, Dhruv
Batra, Vincent Cartillier, Sean Crane, Tien Do, Morrie Doulaty, Akshay Erapalli, Christoph
Feichtenhofer, Adriano Fragomeni, Qichen Fu, Abrham Gebreselasie, Cristina Gonzalez, James
Hillis, Xuhua Huang, Yifei Huang, Wenqi Jia, Weslie Khoo, Jachym Kolar, Satwik Kottur,
Anurag Kumar, Federico Landini, Chao Li, Yanghao Li, Zhenqgiang Li, Karttikeya Mangalam,
Raghava Modhugu, Jonathan Munro, Tullie Murrell, Takumi Nishiyasu, Will Price, Paola Ruiz
Puentes, Merey Ramazanova, Leda Sari, Kiran Somasundaram, Audrey Southerland, Yusuke
Sugano, Ruijie Tao, Minh Vo, Yuchen Wang, Xindi Wu, Takuma Yagi, Ziwei Zhao, Yunyi Zhu,
Pablo Arbelaez, David Crandall, Dima Damen, Giovanni Maria Farinella, Christian Fuegen,
Bernard Ghanem, Vamsi Krishna Ithapu, C. V. Jawahar, Hanbyul Joo, Kris Kitani, Haizhou
Li, Richard Newcombe, Aude Oliva, Hyun Soo Park, James M. Rehg, Yoichi Sato, Jianbo
Shi, Mike Zheng Shou, Antonio Torralba, Lorenzo Torresani, Mingfei Yan, and Jitendra Malik.
Ego4D: Around the World in 3,000 Hours of Egocentric Video. arXiv, October 2021.

[28] Chunhui Gu, Chen Sun, Sudheendra Vijayanarasimhan, Caroline Pantofaru, David A. Ross,
George Toderici, Yeqing Li, Susanna Ricco, Rahul Sukthankar, Cordelia Schmid, and Jitendra
Malik. Ava: A video dataset of spatio-temporally localized atomic visual actions. 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 6047-6056, 2017.

[29] Kensho Hara, Hirokatsu Kataoka, and Yutaka Satoh. Learning Spatio-Temporal Features with
3D Residual Networks for Action Recognition, August 2017.

[30] Bradley Hayes and Brian Scassellati. Autonomously constructing hierarchical task networks for
planning and human-robot collaboration. In 2016 IEEE International Conference on Robotics
and Automation (ICRA), pages 5469-5476, 2016.

[31] Kaiming He, Xiangyu Zhang, Shaoqging Ren, and Jian Sun. Deep Residual Learning for Image
Recognition. arXiv, December 2015.

[32] Henghui Zhao, Isma Hadji, Nikita Dvornik, K. Derpanis, R. Wildes, and A. Jepson. P3IV:
Probabilistic Procedure Planning from Instructional Videos with Weak Supervision. Computer
Vision and Pattern Recognition, 2022.

[33] De-An Huang, Li Fei-Fei, and Juan Carlos Niebles. Connectionist temporal modeling for
weakly supervised action labeling. CoRR, abs/1607.08584, 2016.

[34] Youngkyoon Jang, Brian Sullivan, Casimir Ludwig, lain Gilchrist, Dima Damen, and Walterio
Mayol-Cuevas. Epic-tent: An egocentric video dataset for camping tent assembly. In Proceed-
ings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops, Oct
2019.

[35] Y.-G. Jiang, J. Liu, A. Roshan Zamir, G. Toderici, I. Laptev, M. Shah, and R. Sukthankar.
THUMOS challenge: Action recognition with a large number of classes. http://crcv.
ucf.edu/THUMOS14/, 2014.

[36] Jing Bi, Jiebo Luo, and Chenliang Xu. Procedure Planning in Instructional Videos via Contextual
Modeling and Model-based Policy Learning. IEEE International Conference on Computer
Vision, 2021.

[37] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization, January
2017.

[38] Hilde Kuehne, Ali Arslan, and Thomas Serre. The language of actions: Recovering the syntax
and semantics of goal-directed human activities. In 2014 IEEE Conference on Computer Vision
and Pattern Recognition, pages 780-787, 2014.

[39] Yin Li, Miao Liu, and James M. Rehg. In the eye of the beholder: Gaze and actions in first
person video. CoRR, abs/2006.00626, 2020.

[40] Neelu Madan, Nicolae-Catalin Ristea, Radu Tudor Ionescu, Kamal Nasrollahi, Fahad Shahbaz
Khan, Thomas B. Moeslund, and Mubarak Shah. Self-Supervised Masked Convolutional
Transformer Block for Anomaly Detection, September 2022. arXiv:2209.12148 [cs].

13

http://crcv.ucf.edu/THUMOS14/
http://crcv.ucf.edu/THUMOS14/

[41] Weichao Mao, Ruta Desai, Michael Louis Tuzzolino, and Nitin Kamra. Action dynamics task
graphs for learning plannable representations of procedural tasks, 2023.

[42] Mengmeng Wang, Jiazheng Xing, and Yong Liu. ActionCLIP: A New Paradigm
for Video Action Recognition. arXiv.org, 2021. ARXIV_ID: 2109.08472 S2ID:
dc05240a06326b5b1664f7e8c95c330b08cd0349.

[43] Antoine Miech, Ivan Laptev, Josef Sivic, Heng Wang, Lorenzo Torresani, Lorenzo Torresani,
and Du Tran. Leveraging the Present to Anticipate the Future in Videos. 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), June 2019.

[44] Antoine Miech, Dimitri Zhukov, Jean-Baptiste Alayrac, Makarand Tapaswi, Ivan Laptev, and
Josef Sivic. HowTo100M: Learning a Text-Video Embedding by Watching Hundred Million
Narrated Video Clips. In ICCV, 2019.

[45] Dim P. Papadopoulos, Enrique Mora, Nadiia Chepurko, Kuan Wei Huang, Ferda Ofli, and
Antonio Torralba. Learning program representations for food images and cooking recipes, 2022.

[46] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative
style, high-performance deep learning library. Advances in neural information processing
systems, 32, 2019.

[47] Yicheng Qian, Weixin Luo, Dongze Lian, Xu Tang, Peilin Zhao, and Shenghua Gao. SVIP:
sequence verification for procedures in videos. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pages 19858—
19870. IEEE, 2022.

[48] Francesco Ragusa, Antonino Furnari, Salvatore Livatino, Salvatore Livatino, and Gio-
vanni Maria Farinella. The MECCANO Dataset: Understanding Human-Object Interactions
from Egocentric Videos in an Industrial-like Domain. arXiv: Computer Vision and Pattern
Recognition, 2020.

[49] Rishi Hazra. EgoTV: Egocentric Task Verification from Natural Lan-
guage Task Descriptions. arXiv.org, 2023. ARXIV_ID: 2303.16975 S2ID:
1901745a3a592f5026abd1e9d8435019a2a25585.

[50] Nicolae-Catalin Ristea, Neelu Madan, Radu Tudor Ionescu, Kamal Nasrollahi, Fahad Shahbaz
Khan, Thomas B. Moeslund, and Mubarak Shah. Self-Supervised Predictive Convolutional
Attentive Block for Anomaly Detection, March 2022. arXiv:2111.09099 [cs].

[51] Rohit Girdhar and Kristen Grauman. Anticipative Video Transformer. IEEE International
Conference on Computer Vision, October 2021.

[52] Marcus Rohrbach, Anna Rohrbach, Michaela Regneri, Sikandar Amin, Mykhaylo Andriluka,
Manfred Pinkal, and Bernt Schiele. Recognizing fine-grained and composite activities using
hand-centric features and script data. International Journal of Computer Vision, pages 1-28,
2015.

[53] Tim J. Schoonbeek, Tim Houben, Hans Onvlee, Peter H. N. de With, and Fons van der Sommen.
IndustReal: A dataset for procedure step recognition handling execution errors in egocentric
videos in an industrial-like setting, 2024.

[54] Fadime Sener and Angela Yao. Zero-shot anticipation for instructional activities. In 2079
IEEE/CVF International Conference on Computer Vision, ICCV 2019, Seoul, Korea (South),
October 27 - November 2, 2019, pages 862-871. IEEE, 2019.

[55] Gunnar A. Sigurdsson, Giil Varol, X. Wang, Ali Farhadi, Ivan Laptev, and Abhinav Kumar
Gupta. Hollywood in homes: Crowdsourcing data collection for activity understanding. In
European Conference on Computer Vision, 2016.

[56] Gunnar A. Sigurdsson, Giil Varol, Xiaolong Wang, Ivan Laptev, Ali Farhadi, and Abhinav
Gupta. Hollywood in homes: Crowdsourcing data collection for activity understanding. ArXiv
e-prints, 2016.

[57] Sebastian Stein and Stephen J. McKenna. Combining embedded accelerometers with computer
vision for recognizing food preparation activities. In UbiComp ’13: Proceedings of the 2013
ACM international joint conference on Pervasive and ubiquitous computing, pages 729-738.
Association for Computing Machinery, New York, NY, USA, September 2013.

14

[58] Yansong Tang, Dajun Ding, Dajun Ding, Dajun Ding, Yongming Rao, Yu Zheng, Danyang
Zhang, Lili Zhao, Jiwen Lu, and Jie Zhou. COIN: A Large-Scale Dataset for Comprehensive
Instructional Video Analysis. Computer Vision and Pattern Recognition, June 2019.

[59] Zhan Tong, Yibing Song, Jue Wang, and Limin Wang. Videomae: Masked autoencoders are
data-efficient learners for self-supervised video pre-training. Neural Information Processing
Systems, 2022.

[60] Xin Wang, Taein Kwon, Mahdi Rad, Bowen Pan, Ishani Chakraborty, Sean Andrist, Dan
Bohus, Ashley Feniello, Bugra Tekin, Felipe Vieira Frujeri, Neel Joshi, and Marc Pollefeys.
Holoassist: an egocentric human interaction dataset for interactive ai assistants in the real world.
In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pages
20270-20281, October 2023.

[61] Xudong Lin, Fabio Petroni, Gedas Bertasius, Marcus Rohrbach, Shih-Fu Chang, and L. Torre-
sani. Learning To Recognize Procedural Activities with Distant Supervision. Computer Vision
and Pattern Recognition, 2022.

[62] Yoko Yamakata, Shinsuke Mori, and John Carroll. English recipe flow graph corpus. In
Proceedings of the Twelfth Language Resources and Evaluation Conference, pages 5187-5194,
Marseille, France, May 2020. European Language Resources Association.

[63] Serena Yeung, Olga Russakovsky, Ning Jin, Mykhaylo Andriluka, Greg Mori, and Li Fei-Fei.
Every moment counts: Dense detailed labeling of actions in complex videos. International
Journal of Computer Vision, 2017.

[64] Yue Yang, Joongwon Kim, Artemis Panagopoulou, Mark Yatskar, and Chris Callison-Burch. In-
duce, Edit, Retrieve: Language Grounded Multimodal Schema for Instructional Video Retrieval.
arXiv.org, 2021.

[65] Chen-Lin Zhang, Jianxin Wu, and Yin Li. Actionformer: Localizing moments of actions with
transformers. In Shai Avidan, Gabriel J. Brostow, Moustapha Cissé, Giovanni Maria Farinella,
and Tal Hassner, editors, Computer Vision - ECCV 2022 - 17th European Conference, Tel Aviv,
Israel, October 23-27, 2022, Proceedings, Part IV, volume 13664 of Lecture Notes in Computer
Science, pages 492-510. Springer, 2022.

[66] Zhengyuan Yang, Jingen Liu, Jing Huang, Xiaodong He, Tao Mei, Chenliang Xu, and Jiebo
Luo. Cross-modal Contrastive Distillation for Instructional Activity Anticipation. International
Conference on Pattern Recognition, 2022.

[67] Luowei Zhou, Chenliang Xu, and Jason J. Corso. Towards Automatic Learning of Procedures
from Web Instructional Videos. arXiv, March 2017.

[68] Luowei Zhou, Chenliang Xu, and Jason J. Corso. Towards automatic learning of procedures
from web instructional videos. In Sheila A. Mcllraith and Kilian Q. Weinberger, editors,
Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), the
30th innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium
on Educational Advances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA,
February 2-7, 2018, pages 7590-7598. AAAI Press, 2018.

[69] Dimitri Zhukov, Jean-Baptiste Alayrac, Ramazan Gokberk Cinbis, David F. Fouhey, Ivan
Laptev, and Josef Sivic. Cross-task weakly supervised learning from instructional videos. arXiv:
Computer Vision and Pattern Recognition, March 2019.

15

APPENDICES

|A" Motivation for Collecting a new Dataset with Errors|

[E Data Composition|

[F_Benchmarking|

IE.2 Error Recognition| L oL,

[E.3 Mult Step Localization|
|F.4 Zero Shot Error Recognition|

16

17

17
17
20
23

25

25
25
25

28

A MOTIVATION FOR COLLECTING A NEW DATASET WITH ERRORS

Current datasets that study procedural tasks, such as GTEA [19], Breakfast [38], CMU-MMAC [8],
50 Salads [57]], COIN [58], CrossTask [69], ProceL [15], EgoProceL[1], Assembly101 [17], and
HowTol00M [44], encompass temporal variation in the order of the steps performed. But these
datasets are predominantly sourced from crowd-sourced online platforms, which results in the videos
often containing drastically different steps, with alterations impacting more than 30% of the content.

Our interest lies in understanding errors induced by deviating from the given instruction set. To
this end, we require two types of videos —, normal ones that closely follow the instructions and
error videos that depict deviations. Moreover, we aim to capture these videos from an ego-centric
perspective to minimize the occlusions typical in third-person videos. We are primarily interested in
understanding the impact of errors when the objects under the interaction continuously change shape
and colour during a procedural activity.

Recently, the field of error recognition in procedural activities has received significant traction,
leading to the proposal of new datasets with errors [60]], [25]. Although they aim to identify errors in
procedural activities, they focus on tasks related to assembly and disassembly. The activities involve
objects with constant shapes and colors, which lack the desired characteristics. The absence of such
specific video resources led us to curate a dataset embodying all our desired characteristics. By
focusing on cooking activities which involve the desired characteristics, our dataset can be used to
develop easily transferable algorithms for other domains, such as medicine and chemistry.

In subsequent sections, we will describe our data collection and annotation processes and then take a
closer look at the benchmarking process. Our data collection process consists of three distinct phases:
pre-production, production, and post-production.

B DATA COLLECTION—PRE-PRODUCTION PHASE

Our goal is to collect data that can help detect, segment, and analyze errors that may happen during
long procedural tasks. To achieve this, we need to answer the following questions: (1) What to
record; namely, choose the domain and tasks (recipes). (2) How to record; namely, choose the
sensors and design a data/video capturing system. (3) Whom to record; namely, select participants
and train them so that they can competently record the videos.

Table 8: Selected recipes categorized based on the type of required heating instrument.

Heating Instrument Recipe Heating Instrument Recipe

Kettle Coffee Nothing Pinwheels

Microwave Breakfast Burritos Spicy Tuna Avocado Wraps
Butter Corn Cup Tomato Mozzarella Salad
Cheese Pimiento Pan Blender Banana Pancakes
Dressed Up Meatballs Broccoli Stir Fry
Microwave Egg Sandwich Caprese Bruschetta
Microwave French Toast Herb Omelet with Fried Tomatoes
Microwave Mug Pizza Pan Fried Tofu
Mug Cake Sauteed Mushrooms
Ramen Scrambled Eggs
Spiced Hot Chocolate Tomato Chutney

Nothing Cucumber Raita Zoodles

B.1 WHAT TO RECORD?

Current popular procedural activity understanding datasets encompass recorded and curated ones
from crowd-sourced online platforms. Amongst the recorded datasets, Breakfast [38]], 50Salads [57],
CMU-MMAC [8], and GTEA [19] capture people performing cooking activities, and Assembly-
101 [17], EPIC-TENTS [34] and MECCANO [48]] capture people performing activities related to
assembly of toys, tents and lego blocks, respectively. Curated datasets like COIN [58]], CrossTask
[69], and HowTo100M [44] encompass a wide variety of activities from different domains. We
introduced a new perspective on understanding procedural activities from the lens of errors made

17

while performing procedural tasks. We embark on an investigation into this new idea by choosing
cooking as the domain of interest. This careful choice stems from the fact that cooking activities
often encompass complex procedures and provide an opportunity to capture a plethora of potential,
predominantly benign errors.

B.1.1 RECIPES & TASK GRAPHS

We have carefully selected 24 diverse recipes from WikiHow (see Table[8)) that represent various
cuisines and require the use of different culinary tools during preparation. Each recipe in our selected
set can be subdivided into several atomic steps, where each step involves performing a specific
sub-task in the recipe. In general, most recipes available on the web list these sub-tasks in a specific
order. However, common sense tells us that each recipe can often be described by a partial order over
the sub-tasks rather than a total order.

More formally, we use a task graph to represent the partial order over the steps. Each node in the task
graph corresponds to a step and a directed edge between node ¢ and node j denotes that step ¢ must
be done before step j (namely i is a pre-condition of j). For our selected recipes, the corresponding
task graphs are directed acyclic graphs, and therefore a topological sort over them is a valid execution
of the recipe. Our task graphs also include two dummy nodes, “START” and “END”, which denote
the start and end of recipes respectively. The dummy nodes ensure that our task graphs always have
one start node and one terminal node.

Add 1 banana, 1 egg. 1 heaped tbsp flour and
1/2 tsp baking powder to a blender and blitz for
20 seconds. Melt a small knob of butter in a
non-stick frying pan over low-medium heat.
Pour three little puddles straight from the
blender into the frying pan. Cook for 1 min or
until the tops start to bubble. Flip with a fork or
a fish slice and cook for 20-30 seconds more.
Transfer to a plate. Chop 1 strawberry. Serve
the pancakes with chopped strawberries and a
splash of maple syrup if you like.

IDENTIFY
ACTIONS

RECIPE
SELECTION

|
v

Add-Add 1 egg to a blender

Add-Add 1 heaped tbsp flour to a blender
Add-Add 1/2 tsp baking powder to a blender
Add-Add 1 banana to a blender

Chop-Chop 1 strawberry

Add 1 banana, 1 egg, 1 heaped thsp flour and 1/2
tsp baking powder to a blender and blitz for 20
seconds. Melt a small knob of butter in a non-stick
frying pan over low-medium heat. Pour three little
puddles straight from the blender into the frying blitz-blitz the blender for 20 seconds

pan. Cook for 1 min or until the tops start to bubble. Melt-Melt a small knob of butter in a non-stick frying
Flip with a fork or a fish slice and cook for 20-30 pan over low-medium heat

seconds more. Transfer to a plate. Chop 1 Pour-Pour three little puddles straight from the blender
strawberry. Serve the pancakes with chopped into the frying pan

strawberries and a splash of maple syrup if you like. Cook-Cook for 1 min or until the tops start to bubble
Flip-Flip the pancakes with a fork or a fish slice spatula
cook-cook for 20-30 seconds more

Transfer-Transfer to a plate

Serve-Serve the pancakes with chopped strawberries
splash-splash maple syrup on plate

Figure 9: This figure illustrates, with an example, the three steps followed in the creation of an
action-centric graph for a recipe. Given the recipe text as shown in recipe selection, we identify and
mark all the actions necessary for the execution of the recipe as shown in identify actions. Once
these actions are identified, we develop them into steps (as shown in develop steps) where each step
contains only one of the actions identified before. These steps are used to construct an action-centric
graph for the recipe resulting in a structure as depicted in

18

To simplify the complexity of a recipe, we have adopted a technique that uses a flow graph structure
[62] to represent the dependencies between steps (think of it like a flowchart but designed for recipes).
This approach helps us establish a more precise connection between actions and their consequences.
Using an action-centric graph, we emphasize the steps involved in the procedure and illustrate the
sequence of operations in an easy-to-understand manner. Each action directly impacts subsequent
ones, demonstrating the dependencies between tasks.

[Add-Add 1 heaped thsp flour to a blender
Add-Add 1 egg to a blender:

|Chop-Chop 1 strawberry
Add-Add 1 banana to a blender

(Add-Add 1/2 tsp baking powder to a blender|

|blitz-blitz the blender for 20 seconds

[Mert—Merr asmall knob of butter in a non-stick frying pan over low-medium hear]

[Pour-Pourlhree little puddles straight from the blender into the frying pan]

(Cook-Cook for 1 min or until the tops start to bubble]

[Fiip-Fip the pancakes with a fork or afish slice spatula]

cook-cook for 20-30 seconds more

__Transfer-Transfer to a plate
[Serve-Serve the pancakes with chopped strawberries] j]

splash-splash maple syrup on plate

END

Figure 10: This graph displays the implicit dependency structure of the recipe Blender Banana
Pancakes where the content of each node can be interpreted as {{action}-{step}} where {action}
presents the description of the necessary action to be performed, and {step} presents the description
as presented in the recipe text that encompasses the action, ingredients and their quantity required for
the execution of the action, necessary tools used in the execution of the action, constraints on the
duration of the action, how it is performed, why it is performed and other necessary settings of the
environment. e.g., {Add} - { Add one banana to a blender}; here add is the necessary action and the
step: Add one banana to a blender describes the action (adding), ingredient (banana), quantity (1)

We illustrate the process we used to convert a recipe to a task graph using the recipe Blender Banana
Pancakes (see figures 0] and [I0] for a visual guide). Given the recipe description, we first identify all
the actions necessary to complete the recipe and develop steps based on the identified actions, where
each step contains only one among the identified actions, as shown in figure[0] After we develop
steps, we use a relationship annotation tooﬂ to represent the implicit order constraints amongst the
developed steps. The creation of action-centric graphs serves multiple purposes. These graphs can be
utilized to prepare recipe scripts with various orders while still strictly adhering to the constraints
present in the graph. Moreover, given a recording, the graph can be used to verify if the individual
followed the correct sequence of actions based on the inherent graph structure.ipe Blender Banana
Pancakes, the developed steps from[9] when represented as an action-centric graph, result in figure
10

In the future, we envision using our dataset to construct more fine-grained task graphs where
the meaning of the steps is taken into account and how the step changes the environment (post-
condition for a step). In literature, different methods have been proposed to illustrate procedural
activities using task graphs and their variations, such as FlowGraphs [62], Recipe Programs [435],
ConjugateTaskGraphs [30], and ActionDynamicTaskGraphs [41] and our dataset can be used to learn

Shttps://www.lighttag.io/

19

these task graphs in an unsupervised manner (or one can use the semantics of these various task
graphs to label the videos and solve the problem in a supervised manner).

B.2 HOW TO RECORD?

B.2.1 SENSORS

Recognizing the limitations of the Hololens2 augmented reality device in capturing data, despite its
advanced technology, we decided to employ a dual-device strategy ﬂ While the Hololens?2 offers a
wealth of data from various sensors, we faced two main challenges. First, the limited field of view of
the RGB camera inhibits comprehensive data capture. Second, utilizing all the secondary sensors of
the Hololens?2 requires operating in research mode, which, unfortunately, leads to a significant frame
rate reduction for other sensory data, such as depth and monochrome cameras, when we increase the
quality of the captured RGB frames.

To address these issues, we integrated a GoPro into our data-capturing system. Positioned above the
Hololens2 on a head mount worn by the participant, the GoPro records 4K videos at 30 frames per
second, offering a wider field of view compared to that of the Hololens2’s RGB frames. This setup
provides us with a more detailed perspective on the participant’s activities. We use the Hololens2
in research mode to obtain a diverse range of data, including depth streams and spatial information
such as head and hand movements. Additionally, we collect data from three Inertial Measurement
Unit (IMU) sensors: an accelerometer, a gyroscope, and a magnetometer. This combined approach
enables us to capture complete, high-quality activity data.

B.2.2 DATA CAPTURING SYSTEM

We have designed a versatile and expandable system for recording procedural activities, which can
be readily adapted to meet various needs. This system can function in two distinct ways: (1) as a
standalone user application specifically designed for procedural activities and (2) as a comprehensive,
plug-and-play system that functions beyond being just a user application.

In its first mode, the application serves a dual role: primarily as a display interfacemfor the procedure
of the activity and secondarily as a tool for noting and updating any errors made during the execution
of the activity. In its second mode, the system is equipped to capture data streams from various
sensors and allows for easy connection and configuration. This dual functionality enhances the
system’s adaptability, making it an efficient tool for a wide range of procedural activities.

User application. Using several illustrative snippets, we will briefly explain how our system can
be used as a user interface to capture complex procedural activities, including errors. This process
within our system is divided into four stages to facilitate data collection from participants:

Stage-1. As depicted in Figure the first stage involves presenting the participant with a list of
activities on the left side of the interface. Upon selecting an activity, the corresponding steps for the
selected activity are then displayed on the right side of the page.

We offer two options for presenting the steps of an activity, depending on the input provided when
information about the activities is loaded into the database: (1) Recipe Text: If the input for an
activity is plain text, we display the text exactly as provided. (2) Task Graph: If the input for an
activity is an action-centric task graph, we provide a valid sequence of steps that adheres to the
constraints defined by the graph.

Stage-2 This stage is referred to as the "activity preparation" stage. Although optional for a normal
recording, its primary function is to prepare a script to execute during an error recording. One of
our approaches to capturing error recordings involves providing participants with an interface to
contemplate the errors they intend to make and modify the description of the steps for a particular
activity recording session.

8Although we use a dual-device strategy to record activities, it’s important to note that these devices
aren’t synchronized prior to the start of the recording process. Instead, captured footage from both devices is
programmatically synchronized during post-processing using the associated timestamps

"Please view the tablet that displays the interface, as shown in video snippets posted on our website

20

https://error-anonymous-dataset.github.io/ErrorAnonymous/

Select Nommal Acty

Cheese Pimiento

\\\\\ Anmotion Reviex Label Sudio Action Anmorstion

Recording Steps for Cheese Pimieato

Chop-Chop 1/4 red bl pepper into tny bits

Add-Add 1/3 cup cheddar chese to a microwave-safe cup

Place-Place the chopped pepper in the mictomwave-safe bowl

AR e i)

Melt:Melt the checse. . 30 see. (Chesk after 3 for 10 sesonds
more if needed).
Misrowave-Microwave the bovd, covered. for 2

Mix:Mis the chesse and red bell pepper in the bowl
Add-Add 1/4 teaspoon salt to the bowl

‘Add-Add 14 teaspoon pepper tothe bowl
Select Enror Activiy

add-add 112 tbsp softened butte to the bow
Please select an actiy- .

Mix:Mis allthe ingredients of the bow well

NEXT

Figure 11: The interface displayed in the figure represents the initial stage of the recording cycle.
Here, the participant can choose the activity they want to perform from the options presented on the
left. After making a selection, the steps necessary for the chosen recipe will be shown.

As illustrated in Figure [T2] participants can update each step based on different types of errors
categorized as described above. When the participant records, they will see the updated step
description as part of the sequence of steps. Moreover, GPT-4 has provided suggestions on potential
errors that may occur during the activity, now available as static hint options for this recipe. However,
we have observed that these generic errors provided by GPT-4 are not particularly helpful, as
participants only considered them for script preparation in 20% of cases.

Activity Selection Activity Preparation Activity Recording Activity Recording AnnotationReview

PREPARING ACTIVITY PINWHEELS

Place -inch flour torilla on cutting board. Use a butter kmfe 1o scoop nut butter from the ja. Spread nut butter onto the ortilla eaving 1/2-inch uncoveredat th edges. Clean the knife by wiping it with paper towel Use the knife 0 scoop jlly from the
jax.Spread jelly over the nut butter Clean the knife 2 paper towel. Roll the end to the other into a log shape, about 1.5 inches thick Roll it tight enough to prevent gaps, but not so tight that the filling leaks. Secure the rolled
{orila b insering 5 oothpicks abowt 1 nch apart. i the ends ofthe trtill oll with the e ing A% inch margin between the last toothpick and the end of the roll. Discard ends. Slide floss under the tortilla, perpendicular to the length of the
ol Plac the losshalfvay beween o tothpicks. Cros th flos's o ends overthe ortla ol top. Holding one end ofth fos inesch hand, pulthe los nds n opposite irctions o slice. Continueslicng it losfo creste | more
with floss to create 1 more pi c with floss to create 1 more pi » on a plate.

[SHow ERROR HINTS |

Place-Place 8-inch flour tortilla on cutting board
Original Description: Place-Place S-inch flour tortilla on cutting board
O Preparation Exror || () MeaswrementError || (] TimingEmor | [) TechniqueEmor | | () TemperatwreEmor | () MissingStep | (] OnderEmor | [Other

Error Description:

Updated Step Description:

scoop-Use a butter knife to scoop nut butter from the jar

Original Description: scoop-Use a butter knife to scoop nut butter from the jar

O Preparation Exror || (] MeasorementError || (] TimingBrror | [) TechniqueEmor | [J TempematoreError | () MissingStep | | (] OrderEmor | [) Other

Figure 12: This interface enables participants to update step descriptions easily.

Stage-3 During this stage, we present the participants with the sequence of steps for the selected
activity that they will perform. As shown in figure [I3| we display each step either as plain text or
present one topological order of the task graph.

21

Home. Preferences Recording Review Annotation Review Label Studio Action Annotation

o o (-]

Activiy Selection Actwity Preparation Actity Recording Activity Recording AnnotationReview
Jam
Place-Place 8-inch flour tortilla on cutting board
5 toothpicks
Floss
scoop-Use a butter knife to scoop nut butter from the jar
HoloLens
Tz Spread-Spread nut butter onto the tortilla, leaving 1/2-inch uncovered at the edges
Disable
GoPro Clean-Clean the knife by wiping it with a paper towel
Disable

=

scoop-Use the knife to scoop jelly from the jar

Spread-Spread jelly over the nut butter

IEE i

Update Recording Info. Clean-Clean the knife by wiping with a paper towel

0

End
Recording Recording

Roll-Roll the tortilla from one end to the other into a log shape, about 1.5 inches thick. Roll it tight enough to prevent gaps, but not so tight
that the filling leaks

Secure-Secure the rolled tortilla by inserting 5 toothpicks about 1 inch apart

BACK NEXT

Figure 13: This interface shows the necessary steps to complete an activity.

Stage-4 After the data is captured either using our system or from a standalone recording system,
we provide an interface to participants to review the recording they performed and correspondingly
update any unplanned errors they make while performing the activity.

In one of our strategies for capturing error recordings, we asked participants to induce errors
impromptu while performing the activity. In this situation, participants are given a series of steps
corresponding to the task graph’s topological order. Subsequently, participants updated information
about errors they made while performing the recipe. Figure [T4] illustrates a snippet where the
participant updates one of the errors made while performing the recipe Caprese Bruschetta

Activity Selection Activity Preparation Activity Recording Activity Recording AnnotationReview

Update Errors.

Brush-Brush 3 slices of baguette with olive oil on both sides

Original Description: Brush-Brush 2 slices of baguette with olive oil on both sides
S—

O PrepaationEmor | () MeaswementError | () TimingEror | (] TechniqueEmor | () TemperatweEmor (] Missing Step
Enable Delete O OderEnor | O Other

Exror Description:

Updated Step Description:

Update Emors

add-1/4 tsp salt to a bowl

Original Description: add-1/4 tsp salt fo a bowl

O PreparationExror | (] MeaswementError | (] TimingEmor | [TechniqueEmor | (] TemperatweEmor () MissingStep | [] OnderEmor | [J Otter

Error Description:

BACK FINISH

Figure 14: This interface is similar to here the participant can update the information about the
errors induced while performing the activity

22

Data Capturing Application As introduced earlier, the standalone application described above
can be transformed into a data-capturing application by configuring a few plug-and-play modules.
Both the user application and its extended data-capturing application are built using the software
components depicted in Figure[I3]

FRONTEND BACKEND

REACTJS © © PYTHON(FLASK)

APPLICATION

FIREBASE © © REDIS

DATABASE MESSAGE QUEUES

Figure 15: Software components used to build the proposed data capturing system

In developing our data-capturing application, we have utilized data streams from various devices,
specifically Hololens2 and a GoPro. The Hololens?2 is particularly suited for our needs when set in
research mode. It offers a wealth of data from an array of sensors, including a depth sensor, three
Inertial Measurement Unit (IMU) sensors - an accelerometer, a gyroscope, and a magnetometer - and
spatial information that contains head and hand tracking data.

For the Hololens2, we created a custom Unity
streamer application, taking inspiration from
[9]. This application acts as a server, while our WoLoLeNsz PYTHON BAGKEND APPLICATION
Python backend application assumes the role of
a client. When we initiate a recording session,
we establish one TCP socket connection for each
sensor to capture data. As the sensor-specific cusrom UNITY STREAMER
data stream is received, it is immediately pushed i
onto the sensor-specific Redis message queue

Another dedicated Python backend service polls / L
data from these message queues, processes it / Q)
and subsequently stores it on a locally config- / I

GOPRO

ured Network Attached Storage (NAS) server. || poee
When starting a recording session with GoPro, — | —
we utilize the OpenGoPro library to commu- o ‘<‘1'L*°‘°°A"LEN°EST°:?§‘«
nicate and capture data at the established 4K paTaRASE

resolution and 30 FPS. The recorded video is
then downloaded from the GoPro through WiFi
and saved onto the local NAS server. This sys- Figure 16: Figure displays the architecture for the

tem architecture (as shown in figure[T6) allows developed data capturing system
us to capture, process, and securely store vast

amounts of data, all in real-time.

N o | O)
P)

B.3 WHOM TO RECORD

Participant Statistics. We present the statistics regarding the participants who performed cooking
activities in figure [T7] It is important to note that participation in the entire recording process is
voluntary, and individuals were not compensated.

Participant Training. To ensure accurate data collection on cooking errors, participants must
possess basic culinary skills and have complete knowledge of the recipes they will be preparing.
To assist participants, we provided them with a comprehensive list of instructional videos on basic
culinary skills and techniques specific to different recipes.

8Redis (https://redis.com/) is an open-source, in-memory data structure store that’s used to implement NoSQL
key-value databases, caches, and message brokers.

23

Sources of bias. While this work presents the first attempt at building a comprehensive 4D dataset
to study errors in procedural tasks, we acknowledge the dataset’s inherent biases. The number of
participants contributing to this dataset is noticeably smaller than conventional, large-scale action
or activity understanding datasets. Yet, it is important to mention that each participant is asked to
perform and record the same recipe four times, and each time, the recording script changes, thus
making each recording unique. Finally, note that many errors were intentional because the participants
followed a script. However, they also made many unintentional errors in the process, which they
annotated later.

Table 9: S indicates the total number of steps in a given recipe, N,, shows the count of normal
recordings taken for the recipe, D,, denotes the overall duration of these normal recordings, N
shows the count of error recordings taken for the recipe, D, denotes the overall duration of these
error recordings

Recipe S N, D, (hrs) N, D, (hrs)
Pinwheels 19 4 0.72 8 1.2
Tomato Mozzarella Salad 9 11 131 7 0.64
Butter Corn Cup 12 6 1.62 8 1.49
Tomato Chutney 19 7 334 8 2.01
Scrambled Eggs 23 6 2.69 10 3.13
Cucumber Raita 11 12 29 8 1.36
Zoodles 13 5 1.35 10 2.19
Microwave Egg Sandwich 12 6 1.05 12 1.67
Sauted Mushrooms 18 6 273 8 2.21
Blender Banana Pancakes 14 7 1.78 12 2.57
Herb Omelet with Fried Tomatoes 15 6 1.73 11 2.14
Broccoli Stir Fry 25 11 5.74 5 1.68
Pan Fried Tofu 19 8 3.38 7 2.31
Mug Cake 20 7 244 10 232
Cheese Pimiento 11 6 147 9 1.72
Spicy Tuna Avocado Wraps 17 7 20 11 2.66
Caprese Bruschetta 11 6 192 12 2.73
Dressed Up Meatballs 16 6 20 10 3.09
Microwave Mug Pizza 14 7 147 6 1.14
Ramen 15 10 2.40 7 1.45
Coffee 16 8 197 7 1.58
Breakfast Burritos 11 6 122 10 1.52
Spiced Hot Chocolate 7 6 0.82 10 1.01
Microwave French Toast 11 9 194 5 0.66
Total 384 173 50.05 211 44 .41
— e
Male - 75% Right - 75%
Intermediate- 37.5%
(a) Male-Female Ratio (b) Dominant Hand Ratio (c) Cooking Expertise

Figure 17: This data shows information about the individuals who were part of the recordings.

24

C DATA COLLECTION - PRODUCTION PHASE

Once we determined what, where, and whom to record, we proceeded to collect data from participants
while they engaged in cooking activities. Over the course of 32 days, we recorded in 10 different
kitchen settings across the United States. Participants were given the opportunity to schedule their
availability to perform these activities in various kitchen environments. Table [0 describes the statistics
for each selected recipe about the number of normal and error recordings and their total durations,
respectively.

Inspection & Acclimatisation Before starting the recording process in every environment, par-
ticipants must go through a set of steps. Firstly, they are instructed not to have any identifiable
information on the body parts that will be exposed during the recording. Additionally, they are
checked to ensure that they are not carrying any personal identification tools, such as a smartwatch
with personal information. Since participants are filming in unfamiliar kitchen environments, they are
given a detailed orientation about the location of all essential ingredients required to finish the recipe.

Data Capture - Normal Recordings Participants were given a tablet to access the user application
described above. They were instructed to perform normal activities first. Upon selecting a normal
activity, each participant is presented with a sequence of steps corresponding to the topological order
of the constructed action-centric task graph. The participants were expected to follow the sequence of
steps displayed on the tablet precisely and avoid making any errors by deviating from the given steps.

Data Capture - Error Recordings We devised and implemented three strategies for the participants
to follow. Each participant was asked to choose a recording strategy for a particular environment
and was guided accordingly in preparing for his recording. We list the formulated strategies here (1)
Pre-prepared error scripts: The participants were given pre-prepared error scripts with missing
steps and ordering errors. (2) Prepare error scripts: Once participants chose this strategy, they were
given a web-based interface to create an error script for each error recipe recording and displayed
the modified error script on a tablet, enabling participants to perform according to their modified
error scripts (3) Impromptu: During the later stages of the recording process, we implemented a
strategy where participants were asked to induce errors intentionally. Following the completion of
each recording, participants were given access to a web-based interface to update any errors they
made during each step.

Caveats Since we rely on a tablet-based interface to provide the sequence of steps, we also provide
4K videos for the recordings. We are aware that an OCR-based system might be able to recognize the
content in the tablet. To tackle that, we ensured that the test set included videos where participants
looked at the complete text, not just the sequence of steps.

D DATA COLLECTION - POST-PRODUCTION PHASE

D.1 SYNCHRONIZATION

Data is moved to a local Network Attached Storage (NAS) after each recording session. Upon
completion of the recording cycle for each kitchen environment, a synchronization service is employed
to align the raw data streams captured by the Hololens2. Data from multiple streams—including
RGB, depth, spatial, and three Inertial Measurement Unit (IMU) sensors—are synchronized using
timestamps provided by the Hololens2. After synchronization, both the raw and synchronized data
are uploaded to the cloud.

D.2 ANNOTATION
D.2.1 COARSE-GRAINED ACTION/STEP ANNOTATIONS

We designed an interface for performing step annotations in Label Studio ﬂ Each annotator is
presented with this interface to mark each step’s start and end times. Our steps are significantly

“https://labelstud.io/

25

longer than a single fine-grained action and encompass multiple fine-grained actions necessary
for performing the described step. Table [I0]summarizes and compares coarse-grained action/step
annotations for our dataset as well as other popular datasets. To perform coarse-grained action/ step
annotations, we utilized both our user application and Label Studio. We integrated our application
with Label Studio using the APIs provided by Label Studio E This integration allowed for the
seamless creation of a labelling environment for each recording and has provided a way to ensure
that generated annotations are reliably stored.

Table 10: Comparison of coarse-grained action or step annotations across related datasets. Here, 74,4 represents
the avg. duration for each video, N"*“9 shows the total number of segments, N9 reveals the avg. number of
segments per video, and 7,5 shows the avg. duration for all segments.

Dataset Tavg (min) N9 NZS9 T09 (sec)
50Salads 6.4 899 18 36.8
Breakfast 2.3 11,300 6.6 15.1
Assembly 101 7.1 9523 24 16.5
CSV 0.2 18488 9.53 2.1
HoloAssist 4.48 15927 7.17 39.3
Ours (Total) 14.8 5300 13.8 52.78

Annotation Interface. We’ll briefly explain the reasoning behind the design choices of the annotation
interface. Firstly, in step annotations, we are interested in marking the temporal boundaries for each
step of the recording. As a result, we’ve positioned a complete list of all steps corresponding to the
activity underneath the video. After identifying a time period as the boundary for a particular activity
step, this will become visible on the screen’s left-hand side. At the same time, you can see the start
and end times of the step on the right side in the corresponding time slot, which can be used for minor
adjustments in the created annotation.

Grouping (3 Ordered by Time

e R

o o < nmo>

Figure 18: Annotation interface developed to generate step annotations for a recording

D.2.2 FINE-GRAINED ACTION ANNOTATIONS

Inspired by the pause-and-talk narrator [6], we have designed and developed a web-based tool for fine-
grained action annotation that utilizes OpenAI’s Whisper APIs for speech-to-text translation. Even
though we have built this system around the Whisper API, it is flexible enough to accommodate any
automatic speech recognition (ASR) system that can serve transcription requests. Upon acceptance,
we will release the developed web-based annotation tool as part of our codebase. Figure[T9)illustrates
the key steps for a recording and the corresponding step and action annotations.

Ohttps://labelstud.io/

26

- W
° | Add2 Add 1/5 — | Stir [T
o Add Milk to Microwave the mug pieces of tsp Add 1 tsp sugar contents| |Microwave the mug
E Mug for 1 min Choclate cinnamon to the mug of the for 1 min and serve
%) |__|to the mug to the mug mug ||
N o J
w — —
z
o
-
o
< LJ J
Measure 5 Open
Transferring milk Take the mug | | Drop choclate 1/51sp of Clean 1 tsp Stir the contents microwave
from bottle to mug out of micrwave | | chips into mug cinnamon with towel of the mug door

Figure 19: Key steps for the recipe Spiced Hot Chocolate, along with the corresponding step/action
annotations that are presented as part of the dataset.

D.2.3 ERROR ANNOTATIONS

As outlined in Appendix |C] each participant is required to update the errors made during every
recording step. We compile the error descriptions and categorizations provided by the participants

and concisely present them in a mind map as depicted in[20]

g
G 2 5
g E g
% 3 5
3 2 kS £ © &
% % 53 g g ¢
£ % 2z £ I
% 2 5 53 2 25 35
2, 3 32 £ §2 & 3
% 2 8% 3 S5 & &
% ﬁ% 3 23 g & g NS o
ke & % g3 : 58 & $ 5
% % % %% 2 fe 5 & &
% e £T s3% b1 o8 & & & e
2, 2¢ 2% 58 & 85 5 L & o¥
% 4% 993 T8 5 Te > & <
% 3 3%8,%%0 0= 85 & & N
% %& 250 o5 & F & o
%, % 20 [@‘9 S N
%, %0 o€ & o «
%, & & 23
e, Y, X, Qo & &
e, %"/'; %, 00\90 \oéﬂ
oy, 0 X 29
Msup, i, 2 o (o
Clone,, i EY Qe &i‘;@\
030 $ ©
et P i e
00K, Mcope, St) o0& Quep¥yent
9/ ot o % $ e
Saug tim, (A & O o
Cing/m M 1o, X L & w
o, T, ® &6
Gtoge, ;
ing "9 f the
omission o
&, Q rial compie®
0. step
o Missing
Performing steps in incorrect order Order Error S S\Gps
%S"ng excess/|
X rol) less pre
& Q Palsquecze gy 51 to
cend o & 2 oil,
oo S) 9 iy
yrern® > & > 0 Sasyy, e
e a2 <% o "9/ad,
oo o ¢ .2, oo ansry
\w«\% (?) > "% 9 ow,o///;ls%,'l_ Ming
o 2 9 o Qs
9 N Y, % by or,
W . ‘l\\f,\‘; &’W g 2 s,,&”e,%c lts, " Sy, .
SO @ @ %, Ve, i,
R & 00\% } o T, o,
o S a 0B % o
) S 1359 % K o K
A L 02 % Ty
o & Y58 0.0 0.0 B A w,
> & & &8 §8F % 28 33 % %, £
2 K & § 88 8 2% 3% kY %, s,
B 'S ¢ 3 323 3 53 %% S, % %,
S & & g 28 8 3% 3 3 Y
& & §$ 3 52 % 3% s 2
& 5 £ 5 3 2 53 S o,
N & > 3 I 2 3 5, %,
R 5 e & 5 3 0%
& & - %
§ &3 :
= H H 2
3 g °
2
5

Figure 20: A structured synopsis of error categories and descriptions compiled from annotations

27

E DATA COMPOSITION

In this section, we list down all the components provided as part of our data. Raw and synchronized
multi-modal data from Hololens2: The dataset includes raw data captured using the Hololens2
device. This data is multi-modal, which means it contains information in several different forms,
including visual (e.g., images or videos), auditory (e.g., sounds or speech), and others (like depth
information, accelerometer readings, etc.). 4K videos from GoPro: Includes high-resolution 4K
videos recorded using a GoPro camera. Such high-resolution video can provide much detail, which is
particularly useful for tasks like object recognition. Step annotations for all the data. Fine-grained
actions for 20% of the data: Fine-grained actions might include specifics about what objects are
being manipulated, exactly what movements are being made, and so on. This data could be helpful
for tasks that involve understanding or predicting specific types of actions. Extracted features using
multiple backbones for different tasks:. We provide a comprehensive overview of the components
we release with the dataset in table[T]]

Table 11: This table presents an overview of the components we release as part of the dataset.

Device Type Component Sync Other
RGB RGB
RGB pose RGB pose
Depth Depth
Depth pose Depth pose
Audio Audio

Hololens2 Raw Head pose Synchronized Head pose
Left wrist pose Left wrist pose
Right wrist pose Right wrist pose
IMU Accelerometer IMU Accelerometer
IMU Gyroscope IMU Gyroscope
IMU Magnetometer IMU Magnetometer
RGB

Gopro Raw Audio

Annotations Step

Fine-grained Action

28

F BENCHMARKING

In this section, we present further details on the evaluation of the curated dataset on the following
tasks: (1) Supervised Error Recognition, (2) Early Error Prediction, (3) Multi-Step Localization, (4)
Procedure Learning and (5) Zero-Shot Error Recognition.

F.1 DATA SPLITS

We provide a variety of splits for training models, each constructed based on specific criteria to ensure
diversity in generated splits of the dataset, thus enabling models to learn to focus on different aspects
of the data. These include (1) Recording Environment, (2) Recording Person, (3) Recipes (Tasks), (4)
Recordings and (5) Recording Type.

Recording Environment. Our dataset includes data collected from 10 different environments.
However, a larger proportion of recordings are obtained from 5 environments. We leveraged this
information to create a division of the dataset, where we included the recordings from these 5
environments in both the training and validation sets while the recordings from the other environments
were placed in the test set. We made sure to maintain a consistent balance of normal and error
recordings across all three sets.

Recording Persons. Eight participants compiled our dataset, and each participant recorded an equal
number of videos. So, we provide a split where we include recordings of two participants who
performed all the recipes in the test set and the recordings by the rest of the participants in the
train/validation sets.

Recipes. We carefully divided 24 chosen recipes into training, validation, and test sets, grounding our
division on the specific skills each recipe demands. By identifying every skill essential for executing
these recipes, we ensured that each set includes recipes that necessitate the application of these skills.
This split is useful for learning tasks that require skill transfer.

Recordings. Here, we categorize all the recordings of a recipe into train, validation and test sets
based on a given ratio. This split based on recordings is generated randomly and varies each time.

Recording Type. Furthermore, in tasks that require a semantic understanding of errors, methods
can be employed to learn and distinguish between normal and error recordings. In such scenarios,
learning using only normal recordings and identifying errors in error recordings can be incorporated.

F.2 ERROR RECOGNITION

Error recognition aims to identify and flag errors in a given video. In our specific dataset, we divided
each video into segments, where each segment corresponds to a distinct step in the recipe. For
benchmarking error recognition, we mark a segment as normal if the corresponding (recipe) step was
performed correctly; otherwise, we tag it as error.

F.2.1 TRAINING AND EVALUATING BENCHMARK MODELS

We set up the error recognition task (namely, given a video segment, classify it either as error or
normal) as a supervised binary classification problem. The presence of a variety of error types makes
solving this task particularly challenging.

Datasets and Feature Extractors. We employ features extracted by methods detailed in [21} 22| 26,
29.159] to train our error recognition models. Since the feature extractors require fixed-sized inputs
(they are neural networks), we divided each video segment into contiguous 1-second sub-segments.
The video segment may not always be perfectly divisible by 1 second, so the last sub-segment might
be shorter than 1 second. To make this last sub-segment uniform, we use zero-padding; namely, we
add zeros at the end of the sub-segment to extend its duration to 1 second.

Training. At training time, we assign the class label of a segment to all its sub-segments. This yields
training and validation data for learning our proposed classifiers. Specifically, in our study, we used
five pre-trained models: 3D-ResNet [29], SlowFast [22]], X3D [21], VideoMAE [59]] and Omnivore
[26]], which were used to solve video recognition tasks in prior studies, and replaced their output
layer by a hidden layer followed by a sigmoid node (corresponding to the class). Then, we retrained

29

these models using the training set and tuned the hyperparameters using the validation set. In future,
we will explore other options, such as sub-sampling, to ensure fixed-sized inputs for our feature
extractors.

Prediction. At prediction time, we again divide each segment into 1-second sub-segments, and after
applying any necessary zero-padding, designate the class of the segment as the majority class of
its sub-segments. Note that since our proposed method does not reason about order and missing
step errors, we remove them from our evaluation set. In the future, we plan to use neuro-symbolic
methods that leverage background knowledge about error types to improve the performance of error
recognition.

Hyper-parameters. Throughout our experimental configuration, we maintained a uniform minibatch
size of 512 instances. We employed ReLU activation functions in the hidden layers and sigmoid
activation in the output layer. These networks were trained using the PyTorch framework [46], with
the training process executed on a single NVIDIA A40 GPU. We employed the Adam optimizer [37]]
for training and a learning rate of 0.001. All models were trained for 100 epochs.

F.2.2 EARLY ERROR CATEGORY RECOGNITION

Table 12: Early Error Category Recognition

Type of Error Method Name Accuracy Precision Recall F1 Score
3D ResNet 90.44 27.27 4.55 7.79
Slowfast 88.83 20.69 9.09 12.63
Technique Error X3D 89.77 8.33 1.52 2.56
VideoMAE 89.74 30 9.52 14.46
Omnivore 87.75 20.93 13.64 16.51
3D ResNet 93 0 0 0
Slowfast 92.19 20.69 14.63 17.14
Preparation Error X3D 93.41 16.67 4.88 7.55
VideoMAE 92.34 10 541 7.02
Omnivore 90.85 18.6 19.51 19.05
3D ResNet 91.92 0 0 0
Slowfast 89.77 3.45 2.04 2.56
Measurement Error X3D 91.79 0 0 0
VideoMAE 90.32 0 0 0
Omnivore 88.16 4.65 4.08 4.35
3D ResNet 94.58 0 0 0
Slowfast 95.4 5 25 8.33
Temperature Error X3D 89.94 0 0 0
VideoMAE 94 3.57 20 6.06
Omnivore 94.39 7.14 40 12.12
3D ResNet 95.29 9.09 3.85 541
Slowfast 93.14 6.9 7.69 7.27
Timing Error X3D 95.15 8.33 3.85 5.26
VideoMAE 93.64 5 3.85 4.35
Omnivore 90.98 2.33 3.85 2.9

Table [I2] presents the performance of the models for the Early Error Category Recognition task. The
low recall values reveal that these models face difficulty accurately predicting errors when presented
with only partial video segments.

In summary, specialized approaches are crucial for effective error recognition, especially for challeng-
ing error types such as "Temperature Error," "Measurement Error," and "Timing Error". Augmenting
models with semantic information, task graphs, and other relevant attributes associated with errors is
essential for achieving substantial improvements in performance.

30

F.2.3 FURTHER EVALUATION OF ERROR RECOGNITION AND EARLY ERROR RECOGNITION
BASELINES

1.0 1.0
0.8 0.8
o 9
2 2
£ 0.6 £0.6
20.4 20.4
///, — 3d t (AUC = 0.78) — 3di t (AUC = 0.77)
O . 2 T vldr:osi‘r:ae (AUC = 0.82) 0 . 2 v\dt:jr:ae (AUC = 0.82)
—— slowfast (AUC = 0.78) —— slowfast (AUC = 0.75)
—— x3d (AUC = 0.72) —— x3d (AUC = 0.73)
), —— omnivore (AUC = 0.84) A —— omnivore (AUC = 0.83)
0.0 0.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate False Positive Rate
(a) Error Recognition (b) Early Error Recognition

Figure 21: Evaluating Baseline Methods via ROC Curves

Figure 2Ta] and 21D illustrate the Receiver Operating Characteristic (ROC) Curve for the baseline
methods. A similar trend emerges in these visuals where Omnivore outperforms other methods while
the remaining approaches exhibit comparable performance levels. Moreover, the figure underscores
that video understanding methods are not optimally suited for the error recognition task. Consequently,
it emphasizes the requirement for more advanced and refined methods tailored to this task.

)) ’

True 0
True 0
True 0

47

True 0

Labet:

True Labels

L

194 33 160 67

True 1
True 1
True 1

189 38 g 126 101
£
Predicted 0 B ,'Zr,EGi(ted 1 Predicted 0 . P(Edi(ted 1 Predicted 0 Priedi(ted 1 Predicted 0. . Predicted 1
(a) 3D Resnet (b) Slowfast (c) X3D (d) Omnivore
Figure 22: Confusion Matrices Demonstrating Baseline Method Performance in Supervised Error
Recognition
- - - o
3 8 g 5 g 12
= = = =
é 219 8 g 206 21 g 220 7 g 196 30
= = = =
Predicted 0 B Vlzredi(ted 1 Predicted 1.1 P(Edi(ted 1 Predicted 0. PrVEdi(ted 1 Predicted 0. . Predicted 1
(a) 3D Resnet (b) Slowfast (c) X3D (d) Omnivore

Figure 23: Confusion Matrices Demonstrating Baseline Method Performance in Early Error Detection

Figure22]and[23]display the confusion matrices for all baseline methods in both Error Recognition and
Early Error Recognition tasks. A critical observation is that all methods excel in correctly identifying
non-erroneous videos, as evidenced by high values in the first row and first column. Conversely,

the detection of erroneous videos remains a significant challenge for all methods, highlighting the
intrinsic complexity of the task.

31

Step Descriptions
(Error) Ground Truth| Normal

3D Resnet 0.19

Video MAE 0.05

spread-spread marinara SlowFast 0.04
sauce around the X3D 0.03
p=#| surface of the batter Omnivore 0.1

Ground Truth| Error
3D Resnet 038
Video MAE 0.68

spread-spread open

filter in dripper to SlowFast 0.77
create a cone(forget to X3D 0.48
open the filter) Omnivore 0.72

Ground Truth| Normal
3D Resnet 0.22

Roll-Roll the tortilla | V1950 MAE | 0.09

from one end to SlowFast 0.25
another into a log X3D 0.23
shape Omnivore 0.19

il Ground Truth| Error
“H‘w“]“““\“w““w“\‘f“‘ . 3DResnet | 025

Roll-Roll the butter Video MAE 013

around in the mugto | SIowFast 0.44
coat it (Roll some X3D 0.29
butter outside) Omnivore 0.36

Ground Truth| Normal
3D Resnet 0.09
Video MAE 0.02

SlowFast 0.02
| Mince-Mince peeled X3D 0.29
garlic cloves Omnivore 0.21

Ground Truth| Error
3D Resnet 0.15
Video MAE 0.13

Cook-Cook for 2
minutes or until the

z00dles are done(Spill | SlowFast 0.73
outside while sauteing X3D 0.29
to cook) Omnivore 0.23

add-1/4 tsp pepper to a
bowl(add-1/4 tsp [Ground Truth| Error
pepper to a plate.

Unable to open the
container and replaced
with other pepper
powder container.

3D Resnet 0.53
Video MAE 0.46

Spilling happens while | SlowFast 0.56
transferring pepper to X3D 0.5
plate.) Omnivore 0.64

Figure 24: The first column presents visual representations or video images. The second column
offers descriptions of each step and uses red text to highlight any errors present. The third column
outlines the methods evaluated. The last column displays the ground truth, indicating whether it’s an
Error or Normal segment. The following rows show the predicted probabilities for the given example.
A class label of 1 implies an error; Examples identified with higher probabilities are classified as
errors.

F.2.4 QUALITATIVE RESULTS FOR ERROR RECOGNITION

Figure [24] presents qualitative findings across seven examples, four of which contain errors, and
three are from normal segments. The second column outlines the specific steps and highlights errors
in red. Among these frames, the first, third, and fifth are from normal videos, which all models
successfully classified. For the frames containing errors, one example was misclassified by all
baseline methods. Importantly, no error examples were correctly classified by all the methods. In
one particularly challenging case, all methods failed to identify an error where butter fell outside
the bowl, likely obscured by the background. These observations emphasize the inherent difficulty
in error recognition and indicate that future improvements may necessitate methods designed for
semantic context understanding.

32

F.3 MULTI STEP LOCALIZATION

The task of multi-step localization entails simultaneous recognition and localization of steps per-
formed in a procedural activity. Here, we cast this as a Temporal Localization problem where we
extract features using pretrained action recognition models and train an ActionFormer head. We
further train models utilizing features extracted using Omnivore as the backbone for video segments
of lengths Isec, 3sec, and 4 seconds and present results in Table[I3] We observe an improvement
in the performance of the model as we increase the length of video segments used for extracting
features.

Table 13: MSL using features extracted using omnivore for varying length video segments

B D 7;=0.1 7,=03 7,=05
mAP R@1 R@5 mAP R@1 R@5 mAP R@1 R@5

£ 6751 6445 6231 8532 8282 7811 3832 3654 33.41
O, P 7596 7335 7034 92.14 90.51 8824 4582 44.12 41.16
R 7371 7145 68.14 92.08 89.82 86.38 4276 40.52 37.19
E 7299 70.05 66.57 86.03 83.68 81.02 4347 41.83 3887
O3, P 7863 7696 7461 9327 9123 89.18 50.25 48.54 44385
R 7682 749 7194 9133 89.61 88.11 4923 47.84 44.76
E T185 69.79 6493 88.12 86.33 83.15 43.13 4154 3895
O4s P 7933 7739 7424 9346 91.67 8995 50.69 4949 46.19
R 7861 7659 73.81 93.04 90.99 88.80 5024 48.62 45.64

F.4 ZERO SHOT ERROR RECOGNITION

Table 14: Zero Shot Error Recognition

Method AUC EER

SSMCTB[40] 50.65% 49.65 %
SSPCABI[50] 50.25% 49.74 %

To introduce an additional baseline for error recognition, we reformulate the task as a self-supervised
problem focused on frame-level error recognition. More specifically, we use anomaly detection
methods to classify each frame in each video as either normal or abnormal, where the latter is defined
as an instance that deviates from the expected behavior (the frame where participants made errors).

We used two self-supervised anomaly detection methods from literature, self-supervised masked
convolutional transformer block (SSMCTB) [40]] and self-supervised predictive convolutional atten-
tive block (SSPCAB) [50], and trained them on top of ResNet-50 [31], where the latter serves as a
neural, image-based feature extractor. Both models were trained using reconstruction loss [40]. We
used normal recordings for training and both normal and error recordings for testing. We evaluated
the benchmark models using the frame-level area under the curve (AUC) and Equal Error Rate
(EER) scores. Table|14]shows the results. We observe that SSMCTB is slightly better than SSPCAB.
The AUC scores displayed in this context demonstrate only marginal improvement over random
chance. This emphasizes the considerable difficulty of the task and underscores the necessity for
more specialized approaches to achieve effective error recognition in a self-supervised manner.

33

	Introduction
	Related Work
	Data Collection
	Protocol
	Normal Recordings
	Error Recordings

	Data Annotation

	Baselines
	Error Recognition
	Supervised Error Recognition
	Early Error Recognition
	Error Category Recognition

	Multi Step Localization
	Procedure Learning

	Discussion, Summary and Future Work
	Motivation for Collecting a new Dataset with Errors
	Data Collection—Pre-Production Phase
	What to record?
	How to record?
	Whom to record

	Data Collection - Production Phase
	Data Collection - Post-Production Phase
	Synchronization
	Annotation

	Data Composition
	Benchmarking
	Data Splits
	Error Recognition
	Multi Step Localization
	Zero Shot Error Recognition

