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Abstract

We propose a novel neural networks based approach to efficiently answer arbitrary
Most Probable Explanation (MPE) queries—a well-known NP-hard task—in large
probabilistic models such as Bayesian and Markov networks, probabilistic circuits,
and neural auto-regressive models. By arbitrary MPE queries, we mean that there
is no predefined partition of variables into evidence and non-evidence variables.
The key idea is to distill all MPE queries over a given probabilistic model into a
neural network and then use the latter for answering queries, eliminating the need
for time-consuming inference algorithms that operate directly on the probabilistic
model. We improve upon this idea by incorporating inference-time optimization
with self-supervised loss to iteratively improve the solutions and employ a teacher-
student framework that provides a better initial network, which in turn, helps reduce
the number of inference-time optimization steps. The teacher network utilizes
a self-supervised loss function optimized for getting the exact MPE solution,
while the student network learns from the teacher’s near-optimal outputs through
supervised loss. We demonstrate the efficacy and scalability of our approach on
various datasets and a broad class of probabilistic models, showcasing its practical
effectiveness.

1 Introduction

Probabilistic representations such as Probabilistic Circuits (PCs) [8]], graphical models [26]] such as
Bayesian Networks (BNs) and Markov Networks (MNs), and Neural Autoregressive Models (NAMs)
[S0] are widely used to model large, multi-dimensional probability distributions. However, they face
a significant challenge: as the complexity of these distributions increases, solving practically relevant
NP-hard inference tasks such as finding the Most Probable Explanation (MPE) via exact inference
techniques [39, 40] becomes increasingly difficult and time-consuming. In particular, although
various exact and approximate solvers exist for the MPE task in PCs, BNs and MNss, exact solvers
are often too slow for practical use, and approximate solvers tend to lack the necessary accuracy,
particularly in autoregressive models that currently rely on slow hill-climbing/beam search methods.
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In recent work, Arya et al. [4] proposed a method to overcome the limitations of existing approximate
methods by using neural networks (NNs) to solve the MPE task in PCS Their method draws
inspiration from the learning to optimize literature [[12} 15} [29]142}|55]. Given a PC and a predefined
partition of variables into query and evidence sets, the core idea is to train a NN that takes an
assignment to the evidence variables as input and outputs the most likely assignment to the query
variables w.r.t. the distribution defined by the PC. Arya et al. suggest using either supervised or
self-supervised learning techniques to train the NN; the former requires access to exact inference
schemes, while the latter does not and is therefore more practical.

In this paper, we address a more general and complex version of the MPE task than the one considered
by Arya et al. Specifically, we assume that there is no predefined partition of the variables into
evidence and query sets, which we refer to as the any-MPE task. The complexity of the any-MPE
task arises from the exponential increase in the number of input configurations, compounded by the
exponential number of possible divisions of variables into evidence and query sets. Furthermore, our
method applies to a broad class of probabilistic models, including BNs, MNs and NAMs, whereas
Arya et al.’s method is limited to PCs. In addition, Arya et al.’s method does not fully exploit the
capabilities of self-supervision, and the benefits of combining supervised and self-supervised loss
functions.

This paper presents a novel approach that uses a NN for solving the any-MPE task in a broad class of
probabilistic models (PMs) and achieves technical advancements in three key aspects:

1. Efficient MPE Inference via Encoding Scheme and Loss Function: We introduce a new
encoding scheme that tailors the NN architecture to the specific structure of the input PM. This
scheme not only delineates the input and output nodes for the NN but also establishes a methodology
for setting input values and extracting the MPE solution from the NN’s outputs. Furthermore, we
propose a tractable, and differentiable self-supervised loss function, enabling efficient training.

2. Inference Time Optimization with ITSELF: We introduce a novel inference technique called
Inference Time Self Supervised Training (ITSELF). This technique iteratively refines the MPE
solution during the inference process itself. It utilizes gradient descent (back-propagation) to
update the NN’s parameters using our proposed self-supervised loss, leading to continual (anytime)
improvement towards near-optimal solutions. ITSELF fully utilizes the power of our self-supervised
loss, as it does not require labeled data or an external MPE solver.

3. Two-Phase Pre-training with Teacher-Student Architecture: To address challenges associated
with self-supervised learning and ITSELF, we propose a two-phase pre-training strategy that leverages
a teacher-student architecture. Self-supervised learning can suffer from overfitting and requires careful
regularization. Additionally, ITSELF, especially with random initializations, might necessitate a
substantial number of gradient updates to converge on optimal solutions. Our approach addresses
these issues using the following methodology: (i) The teacher network first overfits the training data
using ITSELF and (ii) The student network is then trained using supervised loss functions (e.g.,
binary cross-entropy) by treating the teacher network’s output as pseudo-labels. This supervised
training phase improves and regularizes the parameter learning process of the student network. It also
provides a robust starting point for ITSELF, significantly reducing the required optimization steps
and leading to substantial performance gains.

Finally, we conduct a detailed experimental comparison of our method with existing approaches
on several types of PMs such as PCs, PGMs and NAMs. Our results demonstrate that our method
surpasses state-of-the-art approximate inference techniques in terms of both accuracy and speed.

2 Background and Motivation

Without loss of generality, we use binary variables which take values from the set {0, 1}. We denote
a random variable by an uppercase letter (e.g., X), and a value assigned to it by the corresponding
lowercase letter (e.g., z). We denote a set of random variables by a bold uppercase letter (e.g., X) and
an assignment of values to all variables in the set by the corresponding bold lowercase letter (e.g., X).

'Arya et al. [4] developed a NN-based method for solving the marginal maximum-a-posteriori (MMAP) task
in PCs. In this paper, we focus on the MPE task, also sometimes referred to as the full MAP task, which is a
special case of MMAP. Our method can be easily extended for solving the MMAP problem in PCs and tractable
graphical models. For simplicity of exposition, we concentrate on the MPE task in this paper.



Throughout the paper when we use the term probabilistic models (PMs), we are referring to a
broad class of probabilistic models in which computing the likelihoo of an assignment to all
variables in the model can be done in polynomial (preferably linear) time in the size of the model.
This class includes, among others, Bayesian and Markov networks collectively called Probabilistic
Graphical Models (PGMs) [26]], smooth and decomposable Probabilistic Circuits (PCs) [8], and
Neural Autoregressive Models (NAMs) such as NADE [50]] and MADE [[17].

We are interested in solving the most probable explanation (MPE) task in PMs, namely the task of
finding the most likely assignment to all unobserved (non-evidence) variables given observations
(evidence). Formally, let M denote a probabilistic model defined over a set of variables X that
represents the distribution p , ,(x). We categorize the variables X into evidence E C X and query
Q C X groups, ensuring that EN Q = @) and E U Q = X. Then, given an assignment e to the set of
evidence variables E, the MPE task can be formulated as:

MPE(Q, e) = argmaxp (qle) = argmax {logp,,(q,e)} 1)
q q

It is known that the MPE task is NP-hard in general and even hard to approximate [9, 11,136,141} 44].

Motivation: The goal of this paper is to develop a method that trains a NN for a given PM and, at
test time, serves as an approximate MPE solver for any-MPE query posed over the PM. By any-MPE,
we mean that the NN can take an assignment to an arbitrary subset of variables (evidence) as input
and output the most likely assignments to the remaining (query) variables. Recently, Arya et al. [4]
proposed a NN-based solution for solving the MPE task in PCs under the constraint that the partition
of the variables into evidence and query sets is known before training the NN. This constraint is highly
restrictive because, for generative models, it is unlikely that such a partition of variables is known
in advance. In such cases, one would typically train a discriminative model rather than a generative
one. Unlike Arya et al.’s method, our approach yields an any-MPE solver. Additionally, Arya et al.’s
approach has several limitations in that it does not fully exploit the benefits of self-supervision during
inference time and requires the use of relatively large NN to achieve good performance in practice.
Our proposed approach, described next, addresses these limitations.

3 A Self-Supervised Neural Approximator for any-MPE

In this section, we develop a neural network (NN) based approach for solving the any-MPE task.
Specifically, given a PM, we develop an input encoding (see Section [3.T) that determines the number
of input nodes of the NN and sets their values for the given MPE query. Additionally, we develop an
output encoding scheme that specifies the number of NN output nodes required for the given PM
and enables the recovery of the MPE solution from the outputs. For training the NN, we introduce
a tractable and differentiable self-supervised loss function (see Section [3.2), whose global minima
aligns with the MPE solutions to efficiently learn the parameters of the NN given unlabeled data.

3.1 An Encoding For any-MPE Instances

Since NNs require fixed-sized inputs and outputs, we introduce input and output encodings that
generate fixed-length input and output vectors for each PM from a given MPE problem instance
MPE(Q, e). To encode the input, for each variable X; € X, we associate two input nodes in the NN,
denoted by X, and X;. Thus for a PM having n (namely, |X| = n) variables, the corresponding NN
has 2n input nodes. Given a query MPE(Q, e), we set the values of the input nodes as follows: (1) If
X, €eEand X; = Oisine,thenwesetX'i =0and X; = 1; Q) If X; € Eand X; = lisin e, then
we set X'Z =1land X; = 0; and (3) If X; € Q then we set XZ =0and X; = 0. (The assignment
X; =1and X; = lisnotused.) Itis easy to see that the input encoding described above yields an
injective mapping between the set of all possible MPE queries over the given PM and the set {0, 1}2".
This means that each unique MPE query (Q, e) will yield a unique 0-1 input vector of size 2n.

The output of the neural network comprises of n nodes with sigmoid activation, where each output
node is associated with a variable X; € X. We ignore the outputs corresponding to the evidence
variables and define a loss function over the outputs corresponding to the query variables in the set
Q. The MPE solution can be reconstructed from the output nodes of the NN by thresholding the

2or a value proportional to it such as the unnormalized probability in Markov networks.



output nodes corresponding to the query variables appropriately (e.g., if the value of the output node
is greater than 0.5, then the query variable is assigned the value 1; otherwise it is assigned to 0).

3.2 A Self-Supervised Loss Function for any-MPE

Since the output nodes of our proposed NN use sigmoid activation, each output is continuous and lies
in the range [0, 1]. Given an MPE query MPE(Q, e), let ¢ € [0, 1]/Q! denote the (continuous) Most
Probable Explanation (MPE) assignment predicted by the NN. In MPE inference, given e, we want
to find an assignment q such that log p 4 (q, €) is maximized, namely, — log p o((q, €) is minimized.
Thus, a natural loss function that we can use is — log p y((q, €). Unfortunately, the NN outputs a
continuous vector q° and as a result p ,(q°, €) is not defined.

Next, we describe how to solve the above problem by leveraging the following property of the class
of PMs that we consider in this paper—specifically BNs, MNs, PCs and NAMs. In these PMs, the
function ¢(q,e) = —log p (e, q), which is a function from {0,1}"™ — R is either a multi-linear
polynomial or a neural network, and can be computed in linear time in the size of the PM. To facilitate
the use of continuous outputs, we define a loss function £°(q°, ) : [0, 1]™ — R such that £¢ coincides
with £ on {0, 1}". For PGMs and PCs, ¢ is a multi-linear function and ¢¢ is obtained by substituting
each occurrence of a discrete variable ¢; € q with the corresponding continuous variable ¢{ € q°
where ¢¢ € [0, 1]. In NAMs, ¢ is a NN and we can perform a similar substitution—we substitute each
binary input ¢; in the NN with a continuous variable ¢ € [0, 1]. This substitution transforms the
discrete NN into a continuous function while preserving its functional form.

An important property of £ is that it can be evaluated and differentiated in polynomial time. Moreover,
when £ is defined by either a neural network (in NAMs) or a multilinear function (in BNs, MNs and
PCs), the minimum value of £¢ over the domain [0, 1]™ is less than or equal to the minimum value of
the original function ¢ over the discrete domain {0, 1}". Formally,

Proposition 1. Let I(q,e) : {0,1}" — R be either a neural network or a multilinear function, and
let1°(q%, e) : [0,1]™ — R be its continuous extension obtained by substituting each binary input g;
with a continuous variable ¢ € [0, 1]. Then,

min (°(q°,e) < min ¥4(q,e
ac€lo,1]" (a )_qe{ol,l}" (@)

Following Arya et al. [4]], we propose to improve the quality of the loss function by tightening the
lower bound given in proposition|1|with an entropy-based penalty (¢), governed by a > 0.

Ql
le(q a) = —a Yy [g5log(qf) + (1 — ¢§) log(1 — ¢5)] )
j=1

This penalty encourages discrete solutions by preferring ¢; values close to 0 or 1, where o modulates
the trade-off. Setting o to 0 yields the continuous approximation; conversely, an « value of oo results
exclusively in discrete outcomes. From proposition [I]and by using the theory of Lagrange multipliers,
we can show that for any o« > 0, the use of the entropy penalty yields a tighter lower bound:

Proposition 2.

: gc 67 < : gc 07 +€ 67 < : g ,
i (q e)—qcfeﬁ(lﬁ]n (9%, e) +lr(q a)_qel{rgﬁlll}n (q,e)

How to use the Loss Function: Given a PM defined over n variables, we can use the self-supervised
loss function £°(q°, e) + ¢g(q°, o) (treating « as a hyper-parameter) to train any neural network
(NN) architecture that has 2n input nodes and n output nodes. This trained NN can then be used to
answer any arbitrary MPE query posed over the PM. The training data for the neural network consists
of assignments (evidence e) to a subset of the variables. Each training example can be generated
using the following three-step process. We first sample a full assignment x to all variables in the PM
using techniques like Gibbs sampling or perfect sampling for tractable distributions such as PCs and
BNs. Second, we choose an integer & uniformly at random from the range {1,...,n} and designate
k randomly selected variables as evidence variables E, and the remaining n — k as query variables Q.
Finally, we project the full assignment x on E. The primary advantage of using the self-supervised
loss function is that it eliminates the need for access to a dedicated MPE solver to provide supervision
during training; gradient-based training of the neural network provides the necessary supervision.
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Figure 1: ITSELF Training Procedure Figure 2: One Training Epoch for GUZIDE

3.3 Inference-Time Neural Optimization using Self-Supervised Loss

At a high level, assuming that the NN is over-parameterized, if we use the self-supervised loss and
repeatedly run (stochastic) gradient updates over the NN for a given dataset, theoretical results [2} [13]]
as well as prior experimental work [46} 56] suggest that the parameters of the NN will converge
to a point near the global minimum of the self-supervised loss function. This means that through
gradient updates, the network will find a near-optimal MPE assignment for each training example.
This strategy of performing gradient updates over the NN can also be used during inference (test)
time to iteratively improve the MPE solution, thereby maximizing the benefits of self-supervision.

Specifically, at test time, given a test dataset (or example), we initialize the NN either randomly
or using a pre-trained model and then run gradient-based updates over the NN iteratively until
convergence. The gradient is computed w.r.t. the self-supervised loss function £¢(q¢, e) + (g (q°, a).
We call the resulting algorithm ITSELF (Inference Time Optimization using SELF-Supervised Loss),
as detailed in Figure|l| The performance of ITSELF typically improves with each iteration until the
loss converges.

Our proposed method, ITSELEF, is closely related to test-time training approaches which are widely
used to solve problems in deep learning [[1} 10} 1913032, 38} 149,151, 57]]. Our method differs from
these previous approaches in that the global minima of our proposed self-supervised loss correspond
to the MPE solutions, provided that the penalty « is sufficiently large.

4 Supervised Knowledge Transfer from ITSELF

A drawback of our self-supervised loss function is that, unlike supervised loss functions such as binary
cross entropy, it is a non-convex function of the NN output As a result, it has a significantly larger
number of local minima compared to the supervised loss function, but also a potentially exponential
number of global minima, because an MPE problem can have multiple optimal solutions [35], all of
which have the same loss function value. Thus, optimizing and regularizing using the self-supervised
loss is difficult compared to a supervised loss, especially when the number of training examples is
large.

Moreover, our experiments show that large datasets necessitate large, over-parameterized neural
networks (NNs) to achieve near-optimal MPE solutions for all examples. However, when the training
data is limited and the NN is sufficiently over-parameterized, our preliminary findings, along with
theoretical and empirical results from prior studies [3} 6, 23} 27 28]}, suggest that the NN is more
likely to approach the global optima. Specifically, with a reasonably sized NN and a small dataset,
the algorithm ITSELF tends to yield near-optimal MPE solutions. A further challenge with ITSELF
is that even for small datasets, achieving convergence from a random initialization requires numerous
iterations of gradient descent, rendering the training process inefficient and slow.

3Note that we are referring to convexity with respect to the outputs, not the parameters of the NN.



Algorithm 1 GUided Iterative Dual LEarning with Self-supervised Teacher (GUZDE)

1: Input: Training data D, teacher 7 and student S having the same structure

2: Qutput: Trained student network &

3: > Database D B stores the best MPE assignment and loss value for each example in D
4: Initialize: Randomly initialize 7, S, and DB

5: for each epoch do

6: Sample a mini-batch D’ from D

7. Update the parameters of 7 using the algorithm ITSELF (self-supervised loss) with Dataset D’
8: for each example e; in D’ do

9:  Make a forward-pass over 7 to get an MPE assignment q; for e;

10:  Update the entry in D B for e; with q; if it has a lower loss value than the current entry

11: end for

12: Update the parameters of S using the mini-batch D’ and labels from DB and a supervised loss
13: T+S > Initialize 7 with S for the next epoch
14: end for

4.1 Teacher-Student Strategy

To address these challenges (using small datasets with ITSELF; designing better initialization for
it; and using non-convex loss functions for training), we propose a two-network teacher-student
strategy (7, 116, 20422| 24} |37, 147, |52H54], where we have two networks with the same structure that
are trained via mini-batch gradient updates. The teacher network is overfitted to the mini-batch using
our self-supervised loss via the ITSELF algorithm, and the student network is subsequently trained
with a supervised loss function such as binary cross entropy. By overfitting the teacher network via
ITSELF on the mini-batch, we ensure that it finds near-optimal MPE assignments for all (unlabeled)
examples in the mini-batch and eventually over the whole training dataset.

The student network then learns from the teacher’s outputs, using them as soft labels in a supervised
learning framework. This transfer of knowledge mitigates the optimization difficulties associated
with the non-convex self-supervised loss, allowing the student network to achieve faster convergence
and better generalization with a more manageable model size. Additionally, this strategy reduces
the need for severe over-parameterization and extensive training iterations for the teacher network
because it is operating on a smaller dataset. It also helps achieve better initialization for ITSELF.

4.2 Training Procedure

Our proposed training procedure, which we call GUIDE, is detailed in Algorithm [I] The algorithm
trains a two-network system comprising a teacher network (7°) and a student network (S) with the
same structure. The goal is to train the student network using a combination of self-supervised and
supervised learning strategies. The algorithm takes as input the training data D, along with the teacher
and student networks, 7 and S, respectively and outputs a trained network S. A database (D B) is
utilized to store the best MPE assignment and corresponding loss value for each example in D. The
parameters of 7 and S, and the entries in D B, are randomly initialized at the start.

In each epoch, a mini-batch D’ is sampled from the training data D. The parameters of the teacher
network 7 are then updated using the ITSELF algorithm (which uses a self-supervised loss), applied
to the mini-batch D’ (the mini-batch helps address large data issues associated with ITSELF). For
each example e; in D', we perform a forward-pass over T to obtain an MPE assignment q;. The
database DB is subsequently updated with q; if it has a lower loss value than the current entry for e;.

Following this, the parameters of the student network S are updated using the mini-batch D’, the
labels from DB, and a supervised loss function (s,,;,) such as Binary Cross Entropy or L2 loss.
Finally, the parameters of the teacher network 7 are reinitialized with the updated parameters of the
student network S to prepare for the next epoch (addressing the initialization issue associated with
ITSELF). Figure 2] illustrates a single training epoch of GUIDE.

Thus, at a high level, Algorithm [T/ leverages the strengths of both self-supervised and supervised
learning to improve training efficiency and reduce the model complexity, yielding a student network
S. Moreover, at test time, the student network can serve as an initialization for ITSELF.



5 Experiments

This section evaluates the ITSELF method (see section [3.3), the GUZDE teacher-student training
method (see section[d) and the method that uses only self-supervised training, which we call SSMP
(see section @). We benchmark these against various baselines, including neural network-based and
traditional polynomial-time algorithms that directly operate on the probabilistic model. We begin
by detailing our experimental framework, including competing methods, evaluation metrics, neural
network architectures, and datasets.

5.1 Datasets and Graphical Models

We used twenty binary datasets extensively used in tractable probabilistic models literature [, |18,
34, 150]—referred to as TPM datasets—for evaluating PCs and NAMs. For the purpose of evaluating
PGMs, we utilized high treewidth models from previous UAI inference competitions [14].

To train Sum Product Networks (SPNs), our choice of PCs, we employed the DeeProb-kit library
[33], with SPN sizes ranging from 46 to 9666 nodes. For NAMs, we trained Masked Autoencoder
for Distribution Estimation (MADE) models using PyTorch, following the approach in Germain
et al. [17]. For Markov Networks (MNs5s), a specific type of PGM, we applied Gibbs sampling to
generate 8,000, 1,000, and 1,000 samples for the training, testing, and validation sets, respectively.
The query ratio (qr), defined as the fraction of variables in the query set, was varied across the set
{0.1,0.3,0.5,0.7,0.8,0.9} for each probabilistic model (PM).

5.2 Baseline Methods and Evaluation Criteria

PCs - We used three polynomial-time baseline methods from the probabilistic circuits and probabilis-
tic graphical models literature as benchmarks [41} 45]].

* MAX Approximation (MAX) [45] transforms sum nodes into max nodes. During the upward pass,
max nodes output the highest weighted value from their children. The downward pass, starting
from the root, selects the child with the highest value at each max node and includes all children of
product nodes.

* Maximum Likelihood Approximation (ML) [41]] computes the marginal distribution p(Q;|e) for
each variable Q; € Q, setting (Q; to its most likely value.

* Sequential Approximation (Seq) [41]] iteratively assigns query variables according to an order o.
At each step 7, it selects the j-th query variable (); in o and assigns to it a value ¢; such that
pr(gjle,y) is maximized, where y is an assignment of values to all query variables from 1 to
j—1

We further evaluated the impact of initializing stochastic hill climbing searches using solutions from

all baseline approaches and our proposed methods for MPE inference, conducting 60-second searches

for each MPE problem in our experiments, as detailed in Park and Darwiche [41]].

NAMs - As a baseline, we used the stochastic hill-climbing search (HC) algorithm. Following a
procedure similar to that used for PCs, we conducted a 60-second hill-climbing search for each test
example, with query variables initialized randomly and setting evidence variables according to the
values in the given example.

PGMs - We employed the distributed AND/OR Branch and Bound (AOBB) method [39] as a baseline,
using the implementation outlined in Otten [40]. Since AOBB is an anytime algorithm, we set a
60-second time limit for inference per test example.

Neural Baselines - Arya et al. [4] introduced Self-Supervised learning based MMAP solver for PCs
(SSMP), training a neural network to handle queries on a fixed variable partition within PCs. We
extend this approach to address the any-MPE task in PMs (see Section[3.2), using a single network to
answer any-MPE queries as an additional neural baseline.

Evaluation Criteria - We evaluated competing approaches based on log-likelihood (LL) scores,
calculated as lnpq(e, q), and inference times for given evidence e and query output q. Higher
log-likelihood scores indicate better performance, while shorter inference times are preferable.

5.3 Neural Network-Based Approaches



We implemented two neural network training protocols for each
PM and query ratio: SSMP and GUZDE. Each model was
trained for 20 epochs following the training procedure outlined
by Arya et al. [4] for SSMP. Both protocols employed two dis-
tinct inference strategies, thus forming four neural-based variants.
In the first strategy, we performed a single forward pass through
the network to estimate the values of query variable, as specified
by Arya et al. [4]. The second strategy utilized our novel test-
time optimization-based ITSELF approach for inference. The
ITSELF optimization terminates after 100 iterations or upon
loss convergence for both PCs and PGMs. For NAMs, we in-
crease the limit to 1,000 iterations while keeping the convergence
criterion.

We standardized network architectures for PMs across all experi-
ments. For PCs, we used fully connected Neural Networks (NN)
with three hidden layers (128, 256, 512 nodes). For NAMs and
PGMs, a single hidden layer of 512 nodes was employed. All
hidden layers featured ReLU activation, while the output layers
used sigmoid functions with dropout for regularization [48]]. We
optimized all models using Adam [23]] and implemented them
in PyTorch [43]] on an NVIDIA A40 GPU.

Results for PCs: We compare methods—including three
polynomial-time baselines, neural network-based SSMP, and our
ITSELF and GUZDE methods—on 20 TPM datasets as shown
in the contingency table in figure [3a](detailed results in the sup-
plementary materials). We generated 120 test datasets for the
MPE task using 20 PCs across 6 query ratios (gr). Each cell
(i,7) in the table represents how often (out of 120) the method
in row ¢ outperformed the method in column j based on average
log-likelihood scores. Any difference between 120 and the com-
bined frequencies of cells (¢, 7) and (j, ¢) indicates cases where
the compared methods achieved similar scores. We present sim-
ilar contingency tables for Hill Climbing Search over PCs (Fig.
[3b), NAMs (Fig. [3c), and PGMs (Fig. [3d) to benchmark the
proposed methods against the baselines.

The contingency table for PC (Fig. [3a) shows that methods incor-
porating ITSELF consistently outperform both polynomial-time
and traditional neural baselines, as indicated by the dark blue
cells in the corresponding rows. Notably, GUZDE + ITSELF
is superior to all the other methods in almost two-thirds of the
120 cases, while SSMP + ITSELF is better than both SSMP
and GUZDE. In contrast, the polynomial-time baseline MAX
is better than both SSMP and GUZDE (as used in Arya et al.
[4]), highlighting ITSELF’s significant role in boosting model
performance for the complex any-MPE task.

We compare MAX and GUZDE + ITSELF using a heatmap in
Figure[#a. The y-axis presents datasets by variable count and the
x-axis represents query ratio. Each cell displays the percentage
difference in mean LL scores between the methods, calculated as
%Diff. = 100 x (Ilyn, — Umaz )/ |llmaz|- The heatmap shows that
GUIDE + ITSELF achieves performance comparable to MAX
for small query sets. As the problem complexity increases with
an increase in query set size, our method consistently outper-
forms MAX across all datasets, except for NLTCS and Tretail,
as highlighted by the green cells. In the 12 cases where GUZDE
+ ITSELF underperforms, the performance gap remains minimal,
as indicated by the limited number of red cells in the heatmap.
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MAX ML Seq SSMP GUIDE SSMP GUIDE
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(d) PGMs

Figure 3: MPE method compari-
son across PMs. Blue shows row
superiority, red shows column su-
periority; darker shades indicate
larger values.



Figure[3b] further analyzes the performance of our proposed meth-
ods against various baselines as initialization strategies for Hill
Climbing Search. This comparison evaluates the effectiveness of
ITSELF and GUZDE in enhancing anytime methods compared to
conventional heuristic initialization approaches. Notably, meth-
ods incorporating ITSELF provide superior initialization for local
search-based algorithms.

Results for NAMs: The contingency table in Figure|3c|presents
our evaluation of several methods for NAMs, including HC and
two neural network approaches, SSMP and GUZDE, each tested
with two inference schemes. We evaluated these methods on 20
TPM datasets, creating 80 test sets for the MPE task using 20
MADE:s across four query ratios (qr).

The GUZDE + ITSELF approach demonstrates superior perfor-
mance compared to both baseline methods and other neural in-
ference schemes, aligning with observations from PC. While
HC outperforms SSMP, both GUZDE and the combination of
SSMP-based training with ITSELF-based inference surpass HC,
highlighting their advantages over the baseline.

The heatmaps in Figure @b further highlight the superior perfor-
mance of GUZDE + ITSELF for NAMs, particularly in larger
datasets where it outperforms the HC baseline by over 50% in
most cases, as indicated by the dark green cells. The combi-
nation of GUZDE-based learning with ITSELF-based inference
consistently outperforms the baseline across most datasets, with
exceptions only in the Mushrooms, Connect 4, and Retail. Over-
all, the GUZDE + ITSELF approach significantly enhances the
quality of the MPE solutions in NAM models.

Results for PGMs: The contingency table in[3d compares the
performance of AOBB and four neural-network-based methods
on PGMs across four high-treewidth networks. For this evalua-
tion, we generated 16 test datasets for the MPE task using four
PGMs across four query ratios (gr).

Consistent with results from previous PMs, methods using IT-
SELF for inference consistently outperform the baseline methods
AOBB and SSMP across most scenarios. Both GUZDE and
SSMP outperform AOBB in at least 50 percent of the tests. The
supplementary material presents comparisons against exact so-
lutions, conducted on less complex probabilistic models where
ground truth computation remains tractable.

Does a teacher-student-based network outperform a single
network trained with the self-supervised loss? (GUZDE vs.
SSMP):

This analysis aims to evaluate the performance of GUZDE against
traditional neural network training methods used in SSMP across
different PMs and inference schemes. Using traditional inference
scheme (i.e., one forward pass through the network), GUZDE
consistently outperforms SSMP, demonstrating its superiority
in 60% of scenarios for PCs, more than 80% for NAM models,
and 75% for PGM models. When employing ITSELF-based
inference, GUZDE maintains this advantage, achieving higher
quality solutions in more than 75%, 85%, and 80% of cases for
PCs, NAMs, and PGMs, respectively. Therefore, models trained
using GUIDE are consistently superior to those trained with
SSMP for the any-MPE task.
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Does inference time optimization improve performance? (One-Pass vs. Multi-Pass):

In this analysis, we compare the performance of the single-pass inference method to that of the
proposed multi-pass inference method (ITSELF). ITSELF combined with SSMP training outperforms
the other methods in over 85% cases for PC, and more than 75% for NAM and PGM models. When
used on models trained with GUZDE, ITSELF demonstrates even better results, achieving superior
performance in nearly 90% of PC cases and 75% for both NAMs and PGMs. Overall, GUZDE with
ITSELF inference emerges as the most effective method across all experiments. Empirical evidence
consistently demonstrates ITSELF’s superiority over single-pass inference across PMs.

The inference time analysis, detailed in the supplementary material, compares computational ef-
ficiency across methods using the natural logarithm of execution time in microseconds. Neural
network-based approaches with traditional inference demonstrate the fastest performance across all
PMs, as they only require a single forward pass to compute query variable values. For MADE, models
trained with GUZDE and ITSELF are the next most efficient. In PGMs, GUZDE + ITSELF ranks
third, followed by SSMP + ITSELF. For PCs, MAX is marginally faster than both GUZDE + ITSELF
and SSMP + ITSELF, while ML and Seq have the longest computational times. In general, models
trained with GUUZDE achieve shorter inference times than those trained with the self-supervised loss
(SSMP), as they require fewer ITSELF iterations due to more effective initial training.

Summary: Our experiments demonstrate that GUZDE + ITSELF outperforms both polynomial-time
and neural-based baselines across various PMs, as evidenced by higher log-likelihood scores. Notably,
ITSELF demonstrates significant advantages over traditional single-pass inference in addressing the
complex any-MPE query task within probabilistic models, emphasizing the importance of Inference
Time Optimization. Furthermore, the superior performance of models trained with GUZDE compared
to SSMP highlights the effectiveness of the dual network approach, which improves initial model
quality and establishes an optimal starting point for ITSELF.

6 Conclusion and Future Work

We introduced novel methods for answering Most Probable Explanation (MPE) queries in probabilistic
models. Our approach employs self-supervised loss functions to represent MPE objectives, enabling
tractable loss and gradient computations during neural network training. We also proposed a new
inference time optimization technique, ITSELF, which iteratively improves the solution to the
MPE problem via gradient updates. Additionally, we introduced a dual-network-based strategy that
combines supervised and unsupervised training which we call GUZDE to provide better initialization
for ITSELF and addressing various challenges associated with self-supervised training. Our method
was tested on various benchmarks, including probabilistic circuits, neural autoregressive models, and
probabilistic graphical models, using 20 binary datasets and high tree-width networks. It outperformed
polytime baselines and other neural methods, substantially in some cases. Additionally, it improved
the effectiveness of stochastic hill climbing (local) search strategies.

Future work includes solving complex queries in probabilistic models with constraints; training
neural networks with losses from multiple probabilistic models to embed their inference mechanisms;
boosting performance by developing advanced encoding strategies for similar tasks; implementing
sophisticated neural architectures tailored to probabilistic models; etc.
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A Experimental Setup

A.1 Datasets and Models

Table [T summarizes the datasets and the probabilistic circuits trained on them. We use the same
datasets for both PCs [8] and NAMs [[17, 50]]. The selection includes both smaller datasets, such as
NLTCS and MSNBC, and larger datasets with over 1000 nodes.

For Markov networks, we utilize high treewidth grid networks, specifically grid40x40.f2.wrap,
grid40x40.f5.wrap, grid40x40.f10.wrap, and grid40x40.f15.wrap. Each model contains 4800 vari-
ables and 1600 factors.

Table 1: Summary of datasets used with their respective numbers of variables and nodes in proba-
bilistic circuits.

Dataset Number of Variables | Number of Nodes in PC
NLTCS 16 125
MSNBC 17 46
KDDCup2k 64 274
Plants 69 3737
Audio 100 348
Jester 100 274
Netflix 100 400
Accidents 111 1178
Mushrooms 112 902
Connect 4 126 2128
Retail 135 359
RCV-1 150 519
DNA 180 1855
Book 500 1628
WebKB 839 3154
Reuters-52 889 7348
20 NewsGroup 910 2467
Movie reviews 1001 2567
BBC 1058 3399
Ad 1556 9666

A.2 Hyperparameters Details

Our experimental framework was designed to ensure consistency and efficiency across all conducted
experiments. For NAM’s, we used MADE, training the model with two hidden layers of 512 and
1024 units, respectively, using the hyperparameters from Germain et al. [17].

For neural network-based solvers, the mini-batch size was set to 512 samples, and a learning rate
decay strategy, reducing the rate by 0.9 upon loss plateauing, was implemented to improve training
efficiency. Optimal hyperparameters were identified via extensive 5-fold cross-validation.

In discrete loss scenarios, the hyperparameter o played a pivotal role. We systematically explored the
optimal « value across the range 0.001,0.01,0.1, 1, 10, 100, 1000 for neural-based models, including
ITSELF and GUZDE. Notably, higher « values better constrain outputs to binary, thereby facilitating
near-optimal results.

B Extending the Current Approach to Other Data Types and Inference Tasks

The current approach can be extended to support both multi-valued discrete and continuous variables,
broadening its utility in diverse scenarios.

For multi-valued discrete variables, the method can be adapted by implementing a multi-class, multi-
output classification head. Each query variable is represented by a softmax output node, which
provides soft evidence by generating probabilistic distributions across multiple discrete values.
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To incorporate continuous variables, we introduce a linear activation function in the output layer. The
loss function, specifically the multi-linear representation of the PM, is modified to accommodate
continuous neural network outputs. For example, in Probabilistic Circuits that use Gaussian distribu-
tions, continuous values can be directly integrated into the loss function, facilitating gradient-based
backpropagation.

These extensions primarily involve adjusting the network’s output layer and refining the self-
supervised loss function represented by the PM. Notably, other elements of our approach, including
the ITSELF and GUIDE procedures, remain unchanged.

Our approach further extends to additional inference tasks over probabilistic models, including
marginal MAP and constrained most probable explanation (CMPE) tasks. However, the scalability of
this approach depends on the computational efficiency of evaluating the loss function for each infer-
ence task. When this evaluation becomes computationally infeasible, the proposed method—training
a neural network to answer queries over probabilistic models—may itself become infeasible. For
example, performing marginal MAP inference over NAMs and PGMs requires repeated evaluations
of the loss function associated with the marginal MAP task and its gradient during training. This
iterative process, essential for updating the neural network’s parameters, can become prohibitively
resource-intensive due to the high computational demands of evaluating the marginal MAP loss over
these probabilistic models.

C A Comparative Analysis of Performance of ITSELF for Different
Pre-Training Methods

This section evaluates the performance of models initialized through various techniques—random
initialization, SSMP, and GUZDE. Each plot represents the loss for a distinct test example, with the
x-axis denoting the number of ITSELF iterations and the y-axis showing the Negative Log Likelihood
(NLL) scores. Lower NLL values signify better solutions. Through this empirical assessment, we
compare the impact of different pre-training methods on model performance.

Figures [5]to 28] present the plots for NAMs. The plots for PCs are shown in Figures 29]to[67] Figures
[68] to[78]illustrate the plots for PGMs. We selected the following datasets for PCs and NAMs: DNA,
RCV-1, Reuters-52, Netflix, WebKB, Audio, Moviereview, and Jester. For PGMs, we used all the
datasets presented in the main paper. Each plot consists of two sections. The left section presents the
Negative Log-Likelihood Loss for 1000 iterations for all methods. The right section contains two
sub-plots: the top sub-plot displays the zoomed-in losses for the first 200 iterations, while the bottom
sub-plot shows the zoomed-in losses for the last 200 iterations.

We randomly initialize the parameters for the random model and perform 1000 iterations of ITSELF
for inference. For the two pre-trained models (SSMP and GUZDE), we update the top IV layers,
where IV is the number of layers corresponding to that loss curve, and fix the remaining bottom layers.
We extract features by passing the input through these fixed layers and then train the parameters of
the top IV layers. We again perform 1000 iterations of ITSELF for inference. For NAMs and PGMs,
we use neural networks with up to one hidden layer, while for PCs, we employ models with up to
three hidden layers.

From the plots for the three Probabilistic Modelss (PMs), we observe that models pre-trained using
the proposed GUZDE training scheme generally have a better starting point for ITSELF, indicated
by a lower loss, compared to all other models. Across a wide array of datasets, PGMs, and query
percentages, the GUZDE method consistently converges to a lower or equivalent loss compared to
other models. Remarkably, it sometimes achieves a loss value that is less than half of the nearest
competing model. Furthermore, the losses for GUZDE are typically more stable than those of other
initialization. In some scenarios, all models achieve a similar final loss, although models initialized
with SSMP and those randomly initialized may experience oscillations in their loss values.

Models pre-trained using the traditional self-supervised loss (SSMP) typically have better or similar
starting points than randomly initialized models. However, models pre-trained using the SSMP
method might converge to a worse loss than their GUZDE pre-trained counterparts.

In most cases, convergence is rapid, even with a reduced learning rate of 10~ compared to the
experiments shown in the main paper. Most methods converge within 200 to 300 iterations, although
some may still oscillate during the later iterations of ITSELF.
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Figure 5: Analysis of ITSELF Loss Across Various Pre-Trained Models for NAMs on the DNA
Dataset at a Query Ratio of 0.5.
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Figure 6: Analysis of ITSELF Loss Across Various Pre-Trained Models for NAMs on the DNA
Dataset at a Query Ratio of 0.7.
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Figure 7: Analysis of ITSELF Loss Across Various Pre-Trained Models for NAMs on the DNA
Dataset at a Query Ratio of 0.9.

17



100

®
S

=)
S

Negative Log Likelihood (NLL) Score

B

20

Dataset: RCV-1, Query Percentage: 0.5

—— SSMP, LR —— GUIDE, LR

LR
NN-1layers = SSMP,NN- llayers = GUIDE, NN - 1 layers

1004

100

200

304

200 400 600 800 1000
Tterations

900

1000

Figure 8: Analysis of ITSELF Loss Across Various Pre-Trained Models for NAMs on the RCV-1
Dataset at a Query Ratio of 0.5.
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Figure 9: Analysis of ITSELF Loss Across Various Pre-Trained Models for NAMs on the RCV-1
Dataset at a Query Ratio of 0.7.
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Figure 10: Analysis of ITSELF Loss Across Various Pre-Trained Models for NAMs on the RCV-1
Dataset at a Query Ratio of 0.9.
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Figure 11: Analysis of ITSELF Loss Across Various Pre-Trained Models for NAMs on the Reuters-52
Dataset at a Query Ratio of 0.5.
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Figure 12: Analysis of ITSELF Loss Across Various Pre-Trained Models for NAMs on the Reuters-52
Dataset at a Query Ratio of 0.7.

Dataset: Reuters-52, Query Percentage: 0.9

1200 e SN L — guzoe, SN e | 1000
. 1000 500
8
B
=
z 800
3 0 100 200
Z 600 e
3
g 200
=S
£ 400
2 150
5
Z

200 1001

\ I I —
0 900 1000
0 200 400 600 800 1000

Iterations

Figure 13: Analysis of ITSELF Loss Across Various Pre-Trained Models for NAMs on the Reuters-52
Dataset at a Query Ratio of 0.9.
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Figure 14: Analysis of ITSELF Loss Across Various Pre-Trained Models for NAMs on the Netflix
Dataset at a Query Ratio of 0.5.
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Figure 15: Analysis of ITSELF Loss Across Various Pre-Trained Models for NAMs on the Netflix
Dataset at a Query Ratio of 0.7.
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Figure 16: Analysis of ITSELF Loss Across Various Pre-Trained Models for NAMs on the Netflix
Dataset at a Query Ratio of 0.9.
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Figure 17: Analysis of ITSELF Loss Across Various Pre-Trained Models for NAMs on the WebKB
Dataset at a Query Ratio of 0.5.
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Figure 18: Analysis of ITSELF Loss Across Various Pre-Trained Models for NAMs on the WebKB
Dataset at a Query Ratio of 0.7.
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Figure 19: Analysis of ITSELF Loss Across Various Pre-Trained Models for NAMs on the WebKB
Dataset at a Query Ratio of 0.9.
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Figure 20: Analysis of ITSELF Loss Across Various Pre-Trained Models for NAMs on the Audio
Dataset at a Query Ratio of 0.5.
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Figure 21: Analysis of ITSELF Loss Across Various Pre-Trained Models for NAMs on the Audio
Dataset at a Query Ratio of 0.7.
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Figure 22: Analysis of ITSELF Loss Across Various Pre-Trained Models for NAMs on the Audio
Dataset at a Query Ratio of 0.9.
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Figure 23: Analysis of ITSELF Loss Across Various Pre-Trained Models for NAMs on the Movie

reviews Dataset at a Query Ratio of 0.5.
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Figure 24: Analysis of ITSELF Loss Across Various Pre-Trained Models for NAMs on the Movie

reviews Dataset at a Query Ratio of 0.7.
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Figure 25: Analysis of ITSELF Loss Across Various Pre-Trained Models for NAMs on the Movie

reviews Dataset at a Query Ratio of 0.9.
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Figure 26: Analysis of ITSELF Loss Across Various Pre-Trained Models for NAMs on the Jester
Dataset at a Query Ratio of 0.5.
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Figure 27: Analysis of ITSELF Loss Across Various Pre-Trained Models for NAMs on the Jester
Dataset at a Query Ratio of 0.7.
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Figure 28: Analysis of ITSELF Loss Across Various Pre-Trained Models for NAMs on the Jester
Dataset at a Query Ratio of 0.9.
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Figure 29: Analysis of ITSELF Loss Across Various Pre-Trained Models for PCs on the DNA Dataset

at a Query Ratio of 0.1.

Dataset: DNA, Query Percentage: 0.3

— Random, LR —— SSMP, LR GUIDE, LR

105 —— Random, NN 1 layers  —— SSMP, NN~ | layers  —— GUTDE, NN - 1 layers 1001
7 Rondom, NN 2lovers —— SSMP, NN - 2 lpers GUTDE, NN - 2 nyers
T Random, NN 3 lovems — SSMP, NN liyens — GUIDE, NN - loern
£ 100 %07
= 80
Z 95
E 0 100 200
2 g 76.2;
£
© 76.00 1
3
e 85
£ 75.75 1
g
7z
80 h 75.50 1
75.25 1
75
900 1000
0 200 400 600 800 1000
Iterations

Figure 30: Analysis of ITSELF Loss Across Various Pre-Trained Models for PCs on the DNA Dataset

at a Query Ratio of 0.3.
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Figure 31: Analysis of ITSELF Loss Across Various Pre-Trained Models for PCs on the DNA Dataset
at a Query Ratio of 0.5.
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Figure 32: Analysis of ITSELF Loss Across Various Pre-Trained Models for PCs on the DNA Dataset
at a Query Ratio of 0.7.
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Figure 33: Analysis of ITSELF Loss Across Various Pre-Trained Models for PCs on the DNA Dataset
at a Query Ratio of 0.9.
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Figure 34: Analysis of ITSELF Loss Across Various Pre-Trained Models for PCs on the RCV-1
Dataset at a Query Ratio of 0.1.
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Figure 35: Analysis of ITSELF Loss Across Various Pre-Trained Models for PCs on the RCV-1
Dataset at a Query Ratio of 0.3.
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Figure 36: Analysis of ITSELF Loss Across Various Pre-Trained Models for PCs on the RCV-1
Dataset at a Query Ratio of 0.5.
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Figure 37: Analysis of ITSELF Loss Across Various Pre-Trained Models for PCs on the RCV-1
Dataset at a Query Ratio of 0.7.
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Figure 38: Analysis of ITSELF Loss Across Various Pre-Trained Models for PCs on the RCV-1
Dataset at a Query Ratio of 0.9.
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Figure 39: Analysis of ITSELF Loss Across Various Pre-Trained Models for PCs on the Reuters-52
Dataset at a Query Ratio of 0.1.
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Figure 40: Analysis of ITSELF Loss Across Various Pre-Trained Models for PCs on the Reuters-52
Dataset at a Query Ratio of 0.3.
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Figure 41: Analysis of ITSELF Loss Across Various Pre-Trained Models for PCs on the Reuters-52
Dataset at a Query Ratio of 0.5.
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Figure 42: Analysis of ITSELF Loss Across Various Pre-Trained Models for PCs on the Reuters-52
Dataset at a Query Ratio of 0.7.
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Figure 43: Analysis of ITSELF Loss Across Various Pre-Trained Models for PCs on the Reuters-52
Dataset at a Query Ratio of 0.9.
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Figure 44: Analysis of ITSELF Loss Across Various Pre-Trained Models for PCs on the Netflix
Dataset at a Query Ratio of 0.1.

Dataset: Netflix, Query Percentage: 0.3
— Random, LR 3 —— guIDE. LR
60 —— Random, NN - 1 layers ~ —— NN - 1 layers === GUTDE, NN - 1 layers
—— Random, NN - 2 layers NN - 2 layers GUIDE, NN - 2 layers
—— Random, NN- 3 layers  —— SSMP, NN~ 3 layers  —— GUTDE, NN - 3 lnyers
£58
%
<56
g
2
£
554
4
g 52
&
Z.
50
49.2
— 900 1000
0 200 400 600 800 1000

Iterations

Figure 45: Analysis of ITSELF Loss Across Various Pre-Trained Models for PCs on the Netflix
Dataset at a Query Ratio of 0.3.
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Figure 46: Analysis of ITSELF Loss Across Various Pre-Trained Models for PCs on the Netflix

Dataset at a Query Ratio of 0.5.
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Figure 47: Analysis of ITSELF Loss Across Various Pre-Trained Models for PCs on the Netflix

Dataset at a Query Ratio of 0.7.
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Figure 48: Analysis of ITSELF Loss Across Various Pre-Trained Models for PCs on the Netflix

Dataset at a Query Ratio of 0.9.
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Figure 49: Analysis of ITSELF Loss Across Various Pre-Trained Models for PCs on the WebKB

Dataset at a Query Ratio of 0.1.
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Figure 50: Analysis of ITSELF Loss Across Various Pre-Trained Models for PCs on the WebKB

Dataset: WebKB, Query Percentage: 0.1
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Figure 51: Analysis of ITSELF Loss Across Various Pre-Trained Models for PCs on the WebKB

Dataset: WebKB, Query Percentage: 0.5
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Dataset: WebKB, Query Percentage: 0.7
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Figure 52: Analysis of ITSELF Loss Across Various Pre-Trained Models for PCs on the WebKB
Dataset at a Query Ratio of 0.7.
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Figure 53: Analysis of ITSELF Loss Across Various Pre-Trained Models for PCs on the WebKB
Dataset at a Query Ratio of 0.9.
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Figure 54: Analysis of ITSELF Loss Across Various Pre-Trained Models for PCs on the Audio
Dataset at a Query Ratio of 0.1.
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Dataset: Audio, Query Percentage: 0.3
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Figure 55: Analysis of ITSELF Loss Across Various Pre-Trained Models for PCs on the Audio
Dataset at a Query Ratio of 0.3.
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Figure 56: Analysis of ITSELF Loss Across Various Pre-Trained Models for PCs on the Audio
Dataset at a Query Ratio of 0.5.
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Figure 57: Analysis of ITSELF Loss Across Various Pre-Trained Models for PCs on the Audio
Dataset at a Query Ratio of 0.7.
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Dataset: Audio, Query Percentage: 0.9
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Figure 58: Analysis of ITSELF Loss Across Various Pre-Trained Models for PCs on the Audio
Dataset at a Query Ratio of 0.9.
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Figure 59: Analysis of ITSELF Loss Across Various Pre-Trained Models for PCs on the Movie
reviews Dataset at a Query Ratio of 0.1.
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Figure 60: Analysis of ITSELF Loss Across Various Pre-Trained Models for PCs on the Movie
reviews Dataset at a Query Ratio of 0.3.
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Dataset: Movie reviews, Query Percentage: 0.5
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Figure 61: Analysis of ITSELF Loss Across Various Pre-Trained Models for PCs on the Movie
reviews Dataset at a Query Ratio of 0.5.
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Figure 62: Analysis of ITSELF Loss Across Various Pre-Trained Models for PCs on the Movie
reviews Dataset at a Query Ratio of 0.7.
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Figure 63: Analysis of ITSELF Loss Across Various Pre-Trained Models for PCs on the Movie
reviews Dataset at a Query Ratio of 0.9.
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Dataset: Jester, Query Percentage: 0.1
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Figure 64: Analysis of ITSELF Loss Across Various Pre-Trained Models for PCs on the Jester
Dataset at a Query Ratio of 0.1.
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Figure 65: Analysis of ITSELF Loss Across Various Pre-Trained Models for PCs on the Jester
Dataset at a Query Ratio of 0.3.
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Figure 66: Analysis of ITSELF Loss Across Various Pre-Trained Models for PCs on the Jester
Dataset at a Query Ratio of 0.5.
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Dataset: Jester, Query Percentage: 0.7
— Random, LR — SSMP, LR —— GUIDE, LR 70
~—— Random, NN - 1 layers SMP, NN - 1 layers  —— GUIDE, NN - 1 layers
—— Random, NN - 2 layers NN - 2 layers GUIDE, NN - 2 layers
—— Random, NN - 3 layers  —— SSMP, NN - 8 layers  —— GUIDE, NN - 3 layers
70
® 60
g
%
g 50
3 0 100 200
=
Zo -
¥
B 5
£ 55 o2
g
z
50
50
48
900 1000
0 200 400 600 800 1000

Iterations

Figure 67: Analysis of ITSELF Loss Across Various Pre-Trained Models for PCs on the Jester
Dataset at a Query Ratio of 0.7.
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Dataset: grid40x40.f10.wrap, Query Percentage: 0.7
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Figure 68: Analysis of ITSELF Loss Across Various Pre-Trained Models for PGMs on the
grid40x40.f10.wrap Dataset at a Query Ratio of 0.7.
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Figure 69: Analysis of ITSELF Loss Across Various Pre-Trained Models for PGMs on the
grid40x40.f10.wrap Dataset at a Query Ratio of 0.9.
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Dataset: gridd0x40.f15.wrap, Query Percentage: 0.5
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Figure 70:
grid40x40.f15.wrap Dataset at a Query Ratio of 0.5.

400 600 800

1000

900 1000

Analysis of ITSELF Loss Across Various Pre-Trained Models for PGMs on the

Dataset: grid40x40.f15.wrap, Query Percentage: 0.7

—— SSMP, LR = GUIDE, LR = GUIDE, NN -1 layers

~2000 T SSMP NN - 1 s ~5000
4000 ~10000
£ —6000
= ~15000
z
Z 8000
g 0 100 200
2
£ ~10000 1500
3
4
= —12000
H ~16000
% —14000
7z

16000 ~17000

~18000

900 1000
0 200 400 600 800 1000

Iterations

Figure 71:
grid40x40.f15.wrap Dataset at a Query Ratio of 0.7.
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Dataset: grid40x40.f15.wrap, Query Percentage: 0.9
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Figure 72:
grid40x40.f15.wrap Dataset at a Query Ratio of 0.9.
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Figure 73: Analysis of ITSELF Loss Across Various Pre-Trained Models for PGMs on the
grid40x40.f2.wrap Dataset at a Query Ratio of 0.5.
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Figure 74: Analysis of ITSELF Loss Across Various Pre-Trained Models for PGMs on the
grid40x40.f2.wrap Dataset at a Query Ratio of 0.7.
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Figure 75: Analysis of ITSELF Loss Across Various Pre-Trained Models for PGMs on the
grid40x40.f2.wrap Dataset at a Query Ratio of 0.9.
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Dataset: grid40x40.f5.wrap, Query Percentage: 0.5
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Figure 76: Analysis of ITSELF Loss Across Various Pre-Trained Models for PGMs on the
grid40x40.f5.wrap Dataset at a Query Ratio of 0.5.
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Figure 77: Analysis of ITSELF Loss Across Various Pre-Trained Models for PGMs on the
grid40x40.f5.wrap Dataset at a Query Ratio of 0.7.
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Figure 78: Analysis of ITSELF Loss Across Various Pre-Trained Models for PGMs on the
grid40x40.f5.wrap Dataset at a Query Ratio of 0.9.
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D Inference Time Comparison

Execution Time Comparison
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Figure 79: Heatmap depicting the inference time for MADE on a logarithmic microsecond scale,
where a lighter color denotes shorter (more favorable) durations.
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Figure 80: Heatmap depicting the inference time for PC on a logarithmic microsecond scale, where a
lighter color denotes shorter (more favorable) durations.

We present the inference times for all baselines and proposed methods in Figures [79]to [81] Figure [79]
details the inference times for MADE, while Figures[80 and [8T respectively illustrate the times for
PCs and PGMs. This comparison facilitates a direct evaluation of the computational efficiency across
different models.
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Figure 81: Heatmap depicting the inference time for PGM on a logarithmic microsecond scale, where
a lighter color denotes shorter (more favorable) durations.

Each cell displays the natural logarithm of the time, measured in microseconds, for each method and
dataset. Lighter colors indicate lower values. Notably, inferences using SSMP and GUZDE require
the shortest time, as these methods necessitate only a single forward pass through the neural network
to obtain the values for the query variables.

For MADE, the subsequent fastest method employs a model trained with GUZDE and conducts
inference using ITSELF, outperforming the approach that uses SSMP for training. This advantage
stems from the reduced number of ITSELF iterations required by GUZDE, benefiting from a more
effectively trained model. In PGMs, a similar pattern emerges with GUZDE + ITSELF as the next
fastest method, followed by SSMP + ITSELF. For PCs, MAX ranks as the next fastest, closely
followed by the GUZDE + ITSELF and SSMP + ITSELF methods. Finally, the ML and Seq methods
display the highest inference times.

Thus, if you require a highly efficient method capable of performing inference in a fraction of a
millisecond, GUZDE is the optimal choice. It outperforms the baseline for both MADE and PGMs.
However, if higher log-likelihood scores are necessary, GUZDE + ITSELF would be suitable, as it
generally surpasses the baselines in speed and performance across various scenarios.

E Gap Analysis For PGM

Table 2] presents the log-likelihood score gap between the neural network methods (SSMP, GUZDE,
SSMP + ITSELF, GUZDE + ITSELF) and exact solutions. These exact solutions are obtained using
AOBB, which provides near-optimal results for smaller datasets. For each approach M, the gap is
calculated as the relative difference between the score of the near-optimal solution (determined by
AOBB) and the score achieved by M. This approach is feasible due to the use of small datasets,
allowing identification of exact solutions.

The final column highlights the neural-based approach achieving the best performance for each
dataset and query ratio combination. Notably, GUZDE and ITSELF consistently surpass other neural
baselines across almost all dataset-query pairs. This analysis provides a comprehensive assessment
of the proposed methods relative to exact solutions on small datasets, enabling a direct comparison of
their effectiveness.
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Table 2: Gap Between AOBB And Other Methods.

Method Query Ratio SSMP GUZIDE SSMP +ITSELF GUIDE + ITSELF Best Method
Grids-17 0.900 0.082 0.060 0.069 0.075 GUIDE
Grids-17 0.800 0.051 0.038 0.040 0.035 GUIDE + ITSELF
Grids-17 0.700 0.042 0.030 0.034 0.016 GUIDE + ITSELF
Grids-17 0.500 0.026 0.024 0.024 0.007 GUIDE + ITSELF
Grids-18 0.900 0.081 0.062 0.071 0.102 GUIDE
Grids-18 0.700 0.033 0.027 0.024 0.015 GUIDE + ITSELF
Grids-18 0.500 0.020 0.018 0.018 0.006 GUIDE + ITSELF
Grids-18 0.800 0.054 0.035 0.045 0.037 GUIDE
Segmentation-14 0.500 0.032 0.032 0.032 0.004 GUIDE + ITSELF
Segmentation-14 0.900 0.045 0.014 0.014 0.005 GUIDE + ITSELF
Segmentation-14 0.800 0.051 0.024 0.024 0.006 GUIDE + ITSELF
Segmentation-14 0.700 0.029 0.029 0.029 0.005 GUIDE + ITSELF
Segmentation-15 0.800 0.046 0.002 0.002 0.002 GUIDE + ITSELF
Segmentation-15 0.500 0.003 0.003 0.003 0.000 GUIDE + ITSELF
Segmentation-15 0.900 0.675 0.255 0.433 0.305 GUIDE
Segmentation-15 0.700 0.003 0.003 0.003 0.002 GUIDE + ITSELF

F Log Likelihood Scores Comparison

This section compares log-likelihood scores across baselines, SSMP, SSMP + ITSELF, GUZDE
and GUZDE + ITSELF for all datasets and PMs. The log likelihood plots for NAMs are depicted
in Figures[82 to[I0T, while those for PCs are illustrated in Figures[I02 to[I21. Each bar represents
the mean log likelihood score of the corresponding method, with tick marks indicating the mean
+ standard deviation. Higher values in these scores signify better performance by the method,
considering they represent log likelihood scores.

F.1 Scores for NAM

Figures[82]to[I0T] present the log likelihood scores for NAMs, illustrating the performance of ITSELF
inference and GUZDE training relative to other baselines. The heatmaps and contingency tables
discussed in the main paper corroborate the superior performance of GUZDE + ITSELF. These
visual representations allow for a comprehensive understanding of the performance of our methods
and baseline approaches, including HC and SSMP, across various datasets and query ratios.
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Figure 82: Log-Likelihood Scores on NLTCS for NAM. Higher Scores Indicate Better Performance.

F.2 Scores for PCs

Analyzing Figures 102 to [[2T, which focuses on PCs, reveals similar patterns. The neural-based
methods significantly outperform the MAX baseline. Among these, GUZDE + ITSELF surpasses
all other polynomial-time baselines and neural methods in over 80 percent of the experiments. This
demonstrates that ITSELF substantially enhances the chances of approaching optimal solutions by
performing test-time optimization. When comparing traditional inference with ITSELF, ITSELF
consistently proves superior. Moreover, GUZDE outperforms the other neural-based training methods
(SSMP).
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Figure 83: Log-Likelihood Scores on for NAM. Higher Scores Indicate Better Performance.
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Figure 84: Log-Likelihood Scores on KDDCup2k for NAM. Higher Scores Indicate Better Perfor-

mance.
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Figure 85: Log-Likelihood Scores on Plants for NAM. Higher Scores Indicate Better Performance.
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Figure 86: Log-Likelihood Scores on Audio for NAM. Higher Scores Indicate Better Performance.
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Figure 87: Log-Likelihood Scores on Jester for NAM
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Figure 88: Log-Likelihood Scores on Netflix for NAM. Higher Scores Indicate Better Performance.
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Figure 89: Log-Likelihood Scores on Accidents for NAM. Higher Scores Indicate Better Perfor-
mance.
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Figure 90: Log-Likelihood Scores on Mushrooms for NAM. Higher Scores Indicate Better Perfor-
mance.
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Figure 91: Log-Likelihood Scores on Connect 4 for NAM. Higher Scores Indicate Better Perfor-
mance.
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Figure 92: Log-Likelihood Scores on RCV-1 for NAM. Higher Scores Indicate Better Performance.
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Figure 93: Log-Likelihood Scores on Retail for NAM
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Figure 94: Log-Likelihood Scores on DNA for NAM. Higher Scores Indicate Better Performance.
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Figure 95: Log-Likelihood Scores on Movie reviews for NAM. Higher Scores Indicate Better
Performance.
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Figure 96: Log-Likelihood Scores on Book for NAM. Higher Scores Indicate Better Performance.
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Figure 97: Log-Likelihood Scores on WebKB for NAM. Higher Scores Indicate Better Performance.
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Figure 98: Log-Likelihood Scores on Reuters-52 for NAM. Higher Scores Indicate Better Perfor-
mance.
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Figure 99: Log-Likelihood Scores on 20 NewsGroup for NAM. Higher Scores Indicate Better
Performance.
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Figure 100: Log-Likelihood Scores on Ad for NAM. Higher Scores Indicate Better Performance.
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Figure 101: Log-Likelihood Scores on BBC for NAM. Higher Scores Indicate Better Performance.
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Figure 102: Log-Likelihood Scores on NLTCS for PCs. Higher Scores Indicate Better Performance.
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Figure 103: Log-Likelihood Scores on for PCs. Higher Scores Indicate Better Performance.
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Figure 104: Log-Likelihood Scores on KDDCup2k for PCs. Higher Scores Indicate Better Perfor-

mance.
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Figure 105: Log-Likelihood

Scores on Plants for PCs. Higher Scores Indicate Better Performance.
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Figure 106: Log-Likelihood

Scores on Audio for PCs. Higher Scores Indicate Better Performance.
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Figure 107: Log-Likelihood Scores on Jester for PCs. Higher Scores Indicate Better Performance.
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Figure 108: Log-Likelihood Scores on Netflix for PCs. Higher Scores Indicate Better Performance.
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Figure 109: Log-Likelihood Scores on Accidents for PCs. Higher Scores Indicate Better Perfor-

mance.
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Figure 110: Log-Likelihood Scores on Mushrooms for PCs. Higher Scores Indicate Better Perfor-
mance.
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Figure 111: Log-Likelihood Scores on Connect 4 for PCs. Higher Scores Indicate Better Perfor-
mance.
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Figure 112: Log-Likelihood Scores on RCV-1 for PCs. Higher Scores Indicate Better Performance.
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Figure 113: Log-Likelihood Scores on Retail for PCs. Higher Scores Indicate Better Performance.
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Figure 114: Log-Likelihood Scores on DNA for PCs. Higher Scores Indicate Better Performance.
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Figure 115: Log-Likelihood Scores on Movie reviews for PCs. Higher Scores Indicate Better
Performance.
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Figure 116: Log-Likelihood Scores on Book for PCs. Higher Scores Indicate Better Performance.
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Figure 117: Log-Likelihood Scores on WebKB for PCs. Higher Scores Indicate Better Performance.
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Figure 118: Log-Likelihood Scores on Reuters-52 for PCs. Higher Scores Indicate Better Perfor-
mance.
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Figure 119: Log-Likelihood Scores on 20 NewsGroup for PCs.
Performance.

Higher Scores Indicate Better
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Figure 120: Log-Likelihood Scores on Ad for PCs. Higher Scores Indicate Better Performance.
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Figure 121: Log-Likelihood Scores on BB

for PCs. Higher Scores Indicate Better Performance.




NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: [NA|
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: [NA]
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: [NA]

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: [NA|

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: [NA]
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: [NA|
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: [NA|
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: [NA|
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: [NA]
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our paper improves the speed, accuracy and scalability of MPE inference
algorithms. Since algorithms already exist for solving MPE tasks, we do not perceive any
negative or positive societal impacts beyond what currently exists.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: [NA]
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: [NA|
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: [NA]
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: [NA|
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: [NA|
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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Abstract

Probabilistic circuits (PCs) such as sum-product networks
efficiently represent large multi-variate probability distribu-
tions. They are preferred in practice over other probabilistic
representations, such as Bayesian and Markov networks, be-
cause PCs can solve marginal inference (MAR) tasks in time
that scales linearly in the size of the network. Unfortunately,
the most probable explanation (MPE) task and its general-
ization, the marginal maximum-a-posteriori (MMAP) infer-
ence task remain NP-hard in these models. Inspired by the
recent work on using neural networks for generating near-
optimal solutions to optimization problems such as integer
linear programming, we propose an approach that uses neu-
ral networks to approximate MMAP inference in PCs. The
key idea in our approach is to approximate the cost of an as-
signment to the query variables using a continuous multilin-
ear function and then use the latter as a loss function. The two
main benefits of our new method are that it is self-supervised,
and after the neural network is learned, it requires only lin-
ear time to output a solution. We evaluate our new approach
on several benchmark datasets and show that it outperforms
three competing linear time approximations: max-product in-
ference, max-marginal inference, and sequential estimation,
which are used in practice to solve MMAP tasks in PCs.

Introduction

Probabilistic circuits (PCs) (Choi, Vergari, and Van den
Broeck 2020) such as sum-product networks (SPNs) (Poon
and Domingos 2011), arithmetic circuits (Darwiche 2003),
AND/OR graphs (Dechter and Mateescu 2007), cutset net-
works (Rahman, Kothalkar, and Gogate 2014), and proba-
bilistic sentential decision diagrams (Kisa et al. 2014) rep-
resent a class of tractable probabilistic models which are
often used in practice to compactly encode a large multi-
dimensional joint probability distribution. Even though all
of these models admit linear time computation of marginal
probabilities (MAR task), only some of them (Vergari et al.
2021; Peharz 2015), specifically those without any latent
variables or having specific structural properties, e.g., cut-
set networks, selective SPNs (Peharz et al. 2016), AND/OR
graphs having small contexts, etc., admit tractable most

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

10918

probable explanation (MPE) inference!'.

However, none of these expressive PCs can efficiently
solve the marginal maximum-a-posteriori (MMAP) task (Pe-
harz 2015; Vergari et al. 2021), a task that combines MAR
and MPE inference. More specifically, the distinction be-
tween MPE and MMAP tasks is that, given observations
over a subset of variables (evidence), the MPE task aims to
find the most likely assignment to all the non-evidence vari-
ables. In contrast, in the MMAP task, the goal is to find the
most likely assignment to a subset of non-evidence variables
known as the query variables, while marginalizing out non-
evidence variables that are not part of the query. The MMAP
problem has numerous real-world applications, especially
in health care, natural language processing, computer vi-
sion, linkage analysis and diagnosis where hidden variables
are present and need to be marginalized out (Bioucas-Dias
and Figueiredo 2016; Kiselev and Poupart 2014; Lee, Mari-
nescu, and Dechter 2014; Ping, Liu, and Ihler 2015).

In terms of computational complexity, both MPE and
MMAP tasks are at least NP-hard in SPNs, a popular class
of PCs (Peharz 2015; Conaty, de Campos, and Maua 2017).
Moreover, it is also NP-hard to approximate MMAP in SPNs

to on’ for fixed 0 < § < 1, where n is the input size (Conaty,
de Campos, and Maud 2017; Mei, Jiang, and Tu 2018). It is
also known that the MMAP task is much harder than the
MPE task and is NP-hard even on models such as cutset net-
works and AND/OR graphs that admit linear time MPE in-
ference (Park and Darwiche 2004; de Campos 2011).

To date, both exact and approximate methods have been
proposed in literature for solving the MMAP task in PCs.
Notable exact methods include branch-and-bound search
(Mei, Jiang, and Tu 2018), reformulation approaches which
encode the MMAP task as other combinatorial optimization
problems with widely available solvers (Maud et al. 2020)
and circuit transformation and pruning techniques (Choi,
Friedman, and Van den Broeck 2022). These methods can
be quite slow in practice and are not applicable when fast,
real-time inference is desired. As a result, approximate ap-
proaches that require only a few passes over the PC are of-
ten used in practice. A popular approximate approach is to

'The MPE inference task is also called full maximum-a-
posteriori (full MAP) inference in literature. In this paper, we adopt
the convention of calling it MPE.
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compute an MPE solution over both the query and unob-
served variables and then project the MPE solution over the
query variables (Poon and Domingos 2011; Rahman, Jin,
and Gogate 2019). Although this approach can provide fast
answers at query time, it often yields MMAP solutions that
are far from optimal.

In this paper, we propose to address the limitations of ex-
isting approximate methods for MMAP inference in PCs
by using neural networks (NNs), leveraging recent work
in the learning to optimize literature (Li and Malik 2016;
Fioretto, Mak, and Hentenryck 2020; Donti, Rolnick, and
Kolter 2020; Zamzam and Baker 2020; Park and Henten-
ryck 2023). In particular, several recent works have shown
promising results in using NNs to solve both constrained and
unconstrained optimization problems (see Park and Henten-
ryck (2023) and the references therein).

The high-level idea in these works is the following: given
data, train NN, either in a supervised or self-supervised
manner, and then use them at test time to predict high-
quality, near-optimal solutions to future optimization prob-
lems. A number of reasons have motivated this idea of learn-
ing to optimize using NNs: 1) NNs are good at approxi-
mating complex functions (distributions), 2) once trained,
they can be faster at answering queries than search-based
approaches, and 3) with ample data, NNs can learn accurate
mappings of inputs to corresponding outputs. This has led
researchers to employ NNs to approximately answer proba-
bilistic inference queries such as MAR and MPE in Bayesian
and Markov networks (Yoon et al. 2019; Cui et al. 2022). To
the best of our knowledge, there is no prior work on solving
MMAP in BNs, MNs, or PCs using NNs.

This paper makes the following contributions. First, we
propose to learn a neural network (NN) approximator for
solving the MMAP task in PCs. Second, by leveraging the
tractability of PCs, we devise a loss function whose gradient
can be computed in time that scales linearly in the size of
the PC, allowing fast gradient-based algorithms for learning
NNs. Third, our method trains an NN in a self-supervised
manner without having to rely on pre-computed solutions to
arbitrary MMAP problems, thus circumventing the need to
solve intractable MMAP problems in practice. Fourth, we
demonstrate via a large-scale experimental evaluation that
our proposed NN approximator yields higher quality MMAP
solutions as compared to existing approximate schemes.

Preliminaries

We use upper case letters (e.g., X) to denote random vari-
ables and corresponding lower case letters (e.g., x) to denote
an assignment of a value to a variable. We use bold upper
case letters (e.g., X) to denote a set of random variables and
corresponding bold lower case letters (e.g., X) to denote an
assignment of values to all variables in the set. Given an as-
signment x to all variables in X and a variable Y € X, let
Xy denote the projection of x on Y. We assume that all ran-
dom variables take values from the set {0, 1}; although note
that it is easy to extend our method to multi-valued variables.
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Probabilistic Circuits

A probabilistic circuit (PC) M (Choi, Vergari, and Van den
Broeck 2020) defined over a set of variables X represents a
joint probability distribution over X using a rooted directed
acyclic graph. The graph consists of three types of nodes:
internal sum nodes that are labeled by +, internal product
nodes that are labeled by x, and leaf nodes that are labeled
by either X or —X where X € X. Sum nodes represent
conditioning, and an edge into a sum node n from its child
node m is labeled by a real number w(m,n) > 0. Given an
internal node (either a sum or product node) n, let ch(n)
denote the set of children of n. We assume that each sum
node n is normalized and satisfies the following property:
Zmech(n) w(m,n) = 1.

In this paper, we focus on a class of PCs which are smooth
and decomposable (Choi, Vergari, and Van den Broeck
2020; Vergari et al. 2021). Examples of such PCs include
sum-product networks (Poon and Domingos 2011; Rahman
and Gogate 2016b), mixtures of cutset networks (Rahman,
Kothalkar, and Gogate 2014; Rahman and Gogate 2016a),
and arithmetic circuits obtained by compiling probabilis-
tic graphical models (Darwiche 2003). These PCs admit
tractable marginal inference, a key property that we lever-
age in our proposed method.

Definition 1. We say that a sum or a product node n is de-
fined over a variable X if there exists a directed path from n
to a leaf node labeled either by X or - X. A PC is smooth if
each sum node is such that its children are defined over the
same set of variables. A PC is decomposable if each prod-
uct node is such that its children are defined over disjoint
subsets of variables.

Example 1. Figure 1(a) shows a smooth and decomposable
probabilistic circuit defined over X = {X1,..., X4}.

Marginal Inference in PCs

Next, we describe how to compute the probability of an as-
signment to a subset of variables in a smooth and decom-
posable PC. This task is called the marginal inference (MAR)
task. We begin by describing some additional notation.

Given a PC M defined over X, let S, P and £ denote
the set of sum, product and leaf nodes of M respectively.
Let Q C X. Given a node m and an assignment q, let
v(m, q) denote the value of m given q. Given a leaf node
n, let var(n) denote the variable associated with n and let
I(n, q) be a function, which we call leaf function, that is de-
fined as follows. [(n, q) equals 0 if any of the following two
conditions are satisfied: (1) the label of n is Q) where Q € Q
and g contains the assignment ) = 0; and (2) if the label of
n is =@ and q contains the assignment () = 1. Otherwise,
it is equal to 1. Intuitively, the leaf function assigns all leaf
nodes that are inconsistent with the assignment q to 0 and
the remaining nodes, namely those that are consistent with
q and those that are not part of the query to 1.

Under this notation, and given a leaf function {(n, q), the
marginal probability of any assignment q w.r.t M, and de-
noted by p ,(q) can be computed by performing the follow-
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Figure 1: (a) An example smooth and decomposable PC. The figure also shows value computation for answering the query
ppm(Xs = 1,X4 = 0). The values of the leaf, sum, and product nodes are given in parentheses on their bottom, top, and
left, respectively. The value of the root node is the answer to the query. (b) QPC obtained from the PC given in (a) for query
variables { X3, X4 }. For simplicity, here, we use an MMAP problem without any evidence. This is because a given evidence
can be incorporated into the PC by appropriately setting the leaf nodes. We also show value computations for the following leaf
initialization: X§ = 0.99, -X$ = 0.01, X§ = 0.05, ~X§ = 0.95 and all other leaves are set to 1.

ing recursive value computations:

I(n,q) ifneL
U(?’l, q) = { ZmECh(n) w(m7 n)v(m, Q) ifneS (1)
H’méch(n) ’U(m, q) ifneP

Let r denote the root node of M. Then, the probability of
q w.r.t. M, denoted by p,,(q) equals v(r, q). Note that if
Q = X, then v(r,x) denotes the probability of the joint
assignment x to all variables in the PC. Thus

>

ye{0,1}1¥I

v(r,q) = o(r, (q,))

where Y = X \ Q and the notation (q,y) denotes the com-
position of the assignments to Q and Y respectively.

Since the recursive value computations require only one
bottom-up pass over the PC, MAR inference is tractable or
linear time in smooth and decomposable PCs.

Example 2. Figure 1(a) shows bottom-up, recursive value
computations for computing the probability of the assign-
ment (X35 = 1, X4 = 0) in our running example. Here, the
leaf nodes — X3 and X4 are assigned to 0 and all other leaf
nodes are assigned to 1. The number in parentheses at the
top, left, and bottom of each sum, product and leaf nodes re-
spectively shows the value of the corresponding node. The
value of the root node equals p (X3 = 1, X4 = 0).

Marginal Maximum-a-Posteriori (MMAP)
Inference in PCs

Given a PC M defined over X, let E C X and Q C X
denote the set of evidence and query variables respectively
suchthat ENQ = (). Let H = X \ (Q U E) denote the
set of hidden variables. Given an assignment e to the evi-
dence variables (called evidence), the MMAP task seeks to
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find an assignment q to Q such that the probability of the
assignment (e, q) w.r.t. M is maximized. Mathematically,

MMAP(Q, e) =argmaxp (e, q) (2)
q

=argmax ) pule.qh) 3
q

he{0,1}/H]

If H = 0 (namely Q is the set of non-evidence variables),
then MMAP corresponds to the most probable explanation
(MPE) task. It is known that both MMAP and MPE tasks are
at least NP-hard in smooth and decomposable PCs (Park and
Darwiche 2004; de Campos 2011; Peharz 2015), and even
NP-hard to approximate (Conaty, de Campos, and Maud
2017; Mei, Jiang, and Tu 2018).

A popular approach to solve the MMAP task in PCs is to
replace the sum (3 ) operator with the max operator during
bottom-up, recursive value computations and then perform-
ing a second top-down pass to find the assignment (Poon and
Domingos 2011).

A Neural Optimizer for MMAP in PCs

In this section, we introduce a learning-based approach us-
ing deep neural networks (NNs) to approximately solve the
MMAP problem in PCs. Formally, the NN represents a func-
tion fp(.) that is parameterized by 0, and takes an assign-
ment e over the evidence variables as input and outputs an
assignment q over the query variables. Our goal is to design
generalizable, continuous loss functions for updating the pa-
rameters of the NN such that once learned, at test time, given
an assignment e to the evidence variables as input, the NN
outputs near-optimal solutions to the MMAP problem.

In this paper, we assume that the sets of evidence
(E={E;}}Y,) and query (Q ={Q;}}L,) variables are
known a priori and do not change at both training and test
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time. We leave as future work the generalization of our ap-
proach that can handle variable length, arbitrarily chosen ev-
idence, and query sets. Also, note that our proposed method
does not depend on the particular NN architecture used, and
we only require that each output node is a continuous quan-
tity in the range [0, 1] and uses a differentiable activation
function (e.g., the sigmoid function).

We can learn the parameters of the given NN either in a
supervised manner or in a self-supervised manner. However,
the supervised approach is impractical, as described below.

In the supervised setting, we assume that we are given
training data D {{e1,d7),...,{eq,q})}, where each
input e; is an assignment to the evidence variables, and
each (label) qj is an optimal solution to the correspond-
ing MMAP task, namely qf = MMAP(Q, e;). We then use
supervised loss functions such as the mean-squared-error

(MSE) Zle la; — qf)||3/d and the mean-absolute-error

(MAE) Z?:l llai — df||1/d where qf is the predicted as-
signment (note that qf is continuous), and standard gradient-
based methods to learn the parameters. Although supervised
approaches allow us to use simple-to-implement loss func-
tions, they are impractical if the number of query variables
is large because they require access to the exact solutions to
several intractable MMAP problems?. We therefore propose
to use a self-supervised approach.

A Self-Supervised Loss Function for PCs

In the self-supervised setting, we need access to training
data in the form of assignments to the evidence variables,
ie, D' = {ey,...,eq}. Since smooth and decomposable
PCs admit perfect sampling, these assignments can be eas-
ily sampled from the PC via top-down AND/OR sampling
(Gogate and Dechter 2012). The latter yields an assignment
x over all the random variables in the PC. Then we simply
project x on the evidence variables E to yield a training ex-
ample e. Because each training example can be generated in
time that scales linearly with the size of the PC, in practice,
our proposed self-supervised approach is likely to have ac-
cess to much larger number of training examples compared
to the supervised approach.

Let g¢ denote the MMAP assignment predicted by the
NN given evidence e € D’ where q¢ € [0,1]M. In MMAP
inference, given e, we want to find an assignment q such
that Inp (e, q) is maximized, namely, —Inp (e, q) is
minimized. Thus, a natural loss function that we can use is
—Inp (e, q). Unfortunately, the NN outputs a continuous
vector g¢ and as a result p (e, q°) is not defined. There-
fore, we cannot use — Inp , (e, q°) as a loss function.

One approach to circumvent this issue is to use a threshold
(say 0.5) to convert each continuous quantity in the range
[0,1] to a binary one. A problem with this approach is that
the threshold function is not differentiable.

Therefore, we propose to construct a smooth, differen-
tiable loss function that given ¢ (q5,-..,45) ap-

Note that the training data used to train the NN in the super-
vised setting is different from the training data used to learn the PC.
In particular, in the data used to train the PC, the assignments to the
query variables Q may not be optimal solutions of MMAP (Q, e).
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proximates —Inp . (e,q) where q (n = ¢ >
0.5],...,qm = [¢5; > 0.5]) and [¢f > 0.5] is an indica-
tor function which is 1 if ¢f > 0.5 and 0 otherwise. The
key idea in our approach is to construct a new PC, which we
call Query-specific PC (QPC) by replacing all binary leaf
nodes associated with the query variables in the original PC,
namely those labeled by @) and —(Q) where Q) € Q, with con-
tinuous nodes Q°¢ € [0, 1] and =Q° € [0, 1]. Then our pro-
posed loss function is obtained using value computations (at
the root node of the QPC) via a simple modification of the
leaf function of the PC. At a high level, our new leaf func-
tion assigns each leaf node labeled by ()5 such that Q); € Q
to its corresponding estimate g5, obtained from the NN and
each leaf node labeled by Q)5 such that Q; € Q to 1 — gj.

Formally, for the QPC, we propose to use leaf function
U'(n, (e,q%)) defined as follows:

1. If the label of n is Qf such that Q; € Q then
U'(n, (e, q%)) = q5-

If n is labeled by —Qf such that Q; € Q then
I'(n,(e,q%)) =1—¢5.

. If n is labeled by E}, such that E};, € E and the assign-
ment Fy, = 01isin e then !’(n, (e,q°)) = 0.

If n is labeled by —E};, such that £}, € E and the assign-
ment Fy, = 1isin e then !’ (n, (e,q°)) = 0.

5. If conditions (1)-(4) are not met then I'(n, (e,q)) = 1.
The value of each node n in the QPC, denoted by
v'(n, (e,q)) is given by a similar recursion to the one given
in Eq. (1) for PCs, except that the leaf function /(n, q) is re-

placed by the new (continuous) leaf function I'(n, (e, q°)).
Formally, v'(n, (e, q%)) is given by

4.

v'(n, (e,q°))

U'(n,(e,q%)) ifnel

Y meen(m) @(m,n)v'(m, (e,q%)) ifnes
meen(n) V' (1, (€,9°)) ifneP

Let r denote the root node of M, then we propose to use

—Inv'(r, (e,q°)) as a loss function.

“4)

Example 3. Figure 1(b) shows the QPC corresponding to
the PC shown in Figure 1(a). We also show value computa-
tions for the assignment (X§ = 0.99, X§ = 0.05).

Tractable Gradient Computation

Our proposed loss function is smooth and continuous be-
cause by construction, it is a negative logarithm of a multilin-
ear function over q°. Next, we show that the partial deriva-
tive of the function w.r.t. ¢§ can be computed in linear time in

the size of the QPC3. More specifically, in order to compute
the partial derivative of QPC with respect to qj, we simply
have to use a new leaf function which is identical to I’ except
that if the label of a leaf node n is ()5 then we set its value
to 1 (instead of ¢§) and if it is —=Q)§ then we set its value —1
(instead of 1 — ¢5). We then perform bottom-up recursive

3Recall that q5 is an output node of the NN and therefore back-
propagation over the NN can be performed in time that scales lin-
early with the size of the NN and the QPC
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value computations over the QPC and the value of the root
node is the partial derivative of the QPC with respect to qj.
In summary, it is straight-forward to show that:

Proposition 1. The gradient of the loss function
—Inv'(r, (e,q%)) wrt. qf can be computed in time
and space that scales linearly with the size of M.

Example 4. The partial derivative of the QPC given in fig-
ure 1(b) w.rt. x5 given (X§ = 0.99, X{ = 0.05) can be
obtained by setting the leaf nodes X5 to 1 and ~X§ to —1,
assigning all other leaves to the values shown in Figure 1(b)
and then performing value computations. After the value
computation phase, the value of the root node will equal the
partial derivative of the QPC w.r.t. x5.

Improving the Loss Function

As mentioned earlier, our proposed loss function is a contin-
uous approximation of the discrete function — In v(r, (e, q))
where q = (¢1 = [¢f > 0.5],...,qm = [¢5; > 0.5]) and
the difference between the two is minimized iff q = q°.
Moreover, since the set of continuous assignments includes
the discrete assignments, it follows that:

min {~nv/(r, (e,q")} < min {~lnv(r, (e.q))} (5)

Since the right-hand side of the inequality given in (5) solves
the MMAP task, we can improve our loss function by tight-
ening the lower bound. This can be accomplished using
an entropy-based penalty, controlled by a hyper-parameter
a > 0, yielding the loss function

() = —Inv'(r, (e,q%))—

M
o> ¢flog(qd) + (1 —¢)log(1 —¢f)  (6)
j=1

The second term in the expression given above is minimized
when each ¢S is closer to 0 or 1 and is maximized when
qjc- = 0.5. Therefore, it encourages 0/1 (discrete) solutions.
The hyperparameter « controls the magnitude of the penalty.
When a@ = 0, the above expression finds an assignment
based on the continuous approximation — lnv’'(r, (e, q%)).
On the other hand, when « oo then only discrete so-
Iutions are possible yielding a non-smooth loss function.
« thus helps us trade the smoothness of our proposed loss
function with its distance to the true loss.

Experiments

In this section, we describe and analyze the results of our
comprehensive experimental evaluation for assessing the
performance of our novel Self-Supervised learning based
MMAP solver for PCs, referred to as SSMP hereafter. We
begin by describing our experimental setup including com-
peting methods, evaluation criteria, as well as NN architec-
tures, datasets, and PCs used in our study.

Competing Methods

We use three polytime baseline methods from the PC and
probabilistic graphical models literature (Park and Darwiche
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2004; Poon and Domingos 2011). We also compared the
impact of using the solutions computed by the three base-
line schemes as well our method SSMP as initial state for
stochastic hill climbing search.

Baseline 1: MAX Approximation (Max). In this scheme
(Poon and Domingos 2011), the MMAP assignment is de-
rived by substituting sum nodes with max nodes. During the
upward pass, a max node produces the maximum weighted
value from its children instead of their weighted sum. Sub-
sequently, the downward pass begins from the root and it-
eratively selects the highest-valued child of a max node (or
one of them), along with all children of a product node.
Baseline 2: Maximum Likelihood Approximation (ML)
(Park and Darwiche 2004) For each variable ) € Q, we
first compute the marginal distribution p ,,(()|e) and then
set @ to argmax;c o 1} Paq(Q@ = jle).

Baseline 3: Sequential Approximation (Seq) In this
scheme (Park and Darwiche 2004), we assign the query
variables one by one until no query variables remain unas-
signed. At each step, we choose an unassigned query vari-
able Q; € Q that maximizes the probability p \(g;|e,y)
for one of its values g; and assign it to q; where y represents
the assignment to the previously considered query variables.
Stochastic Hill Climbing Search. We used the three base-
lines and our SSMP method as the initial state in stochas-
tic hill climbing search for MMAP inference described in
(Park and Darwiche 2004). The primary goal of this ex-
periment is to assess whether our scheme can assist local
search-based anytime methods in reaching better solutions
than other heuristic methods for initialization. In our exper-
iments, we ran stochastic hill climbing for 100 iterations for
each MMAP problem.

Evaluation Criteria

We evaluated the performance of the competing schemes
along two dimensions: log-likelihood scores and inference
times. Given evidence e and query answer q, the log-
likelihood score is given by Inp (e, q).

Datasets and Probabilistic Circuits

We use twenty-two widely used binary datasets from the
tractable probabilistic models’ literature (Lowd and Davis
2010; Haaren and Davis 2012; Larochelle and Murray 2011;
Bekker et al. 2015) (we call them TPM datasets) as well
as the binarized MNIST (Salakhutdinov and Murray 2008),
EMNIST (Cohen et al. 2017) and CIFAR-10 (Krizhevsky,
Nair, and Hinton 2009) datasets. We used the DeeProb-kit
library (Loconte and Gala 2022) to learn a sum-product net-
work (our choice of PC) for each dataset. The number of
nodes in these learned PCs ranges from 46 to 22027.

For each PC and each test example in the 22 TPM
datasets, we generated two types of MMAP instances: MPE
instances in which H is empty and MMAP instances in
which H is not empty. We define query ratio, denoted by ¢r,
as the fraction of variables that are part of the query set. For
MPE, we selected gr from {0.1,0.3,0.5,0.6,0.7,0.8,0.9},
and for MMAP, we replaced 0.9 with 0.4 to avoid small H
and E. For generating MMAP instances, we used 50% of
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Initial Hill Climbing Search
MPE MMAP MPE MMAP
Max SSMP ML Seq | Max SSMP ML Seq | Max SSMP ML Seq | Max SSMP ML Seq
Max 0 64 33 14 0 46 23 10 0 40 13 9 0 27 10 16
SSMP | 88 0 96 77 97 0 102 82 93 0 99 87 98 0 100 86
ML 6 49 0 15 3 34 0 10 19 37 0 14 12 26 0 17
Seq 105 63 105 0 117 53 117 0 85 44 82 0 89 39 90 0

Table 1: Contingency tables for competing methods across MPE and MMAP Problems, including initial and Hill Climbing
Search comparisons. Highlighted values represent results for SSMP.

the remaining variables as evidence variables (and for MPE
instances all remaining variables are evidence variables).

For the MNIST, EMNIST, and CIFAR-10 datasets, we
used ¢gr = 0.7 and generated MPE instances only. More
specifically, we used the top 30% portion of the image as ev-
idence, leaving the bottom 70% portion as query variables.
Also, in order to reduce the training time for PCs, note that
for these datasets, we learned a PC for each class, yielding a
total of ten PCs for each dataset.

Neural Network Optimizers

For each PC and query ratio combination, we trained a cor-
responding neural network (NN) using the loss function de-
scribed in the previous section. Because we have 22 TPM
datasets and 7 query ratios for them, we trained 154 NN for
the MPE task and 154 for the MMAP task. For the CIFAR-
10, MNIST and EMNIST datasets, we trained 10 NNs, one
for each PC (recall that we learned a PC for each class).

Because our learning method does not depend on the spe-
cific choice of neural network architectures, we use a fixed
neural network architecture across all experiments: fully
connected with four hidden layers having 128, 256, 512,
and 1024 nodes respectively. We used ReLU activation in
the hidden layers, sigmoid in the output layer, dropout for
regularization (Srivastava et al. 2014) and Adam optimizer
(Kingma and Ba 2017) with a standard learning rate sched-
uler for 50 epochs. All NNs were trained using PyTorch
(Paszke et al. 2019) on a single NVIDIA A40 GPU. We se-
lect a value for the hyperparameter « used in our loss func-
tion (see equation (6)) via 5-fold cross validation.

Results on the TPM Datasets

We summarize our results for the competing schemes (3
baselines and SSMP) on the 22 TPM datasets using the first
two contingency tables given in Table 1, one for MPE and
one for MMAP. Detailed results are provided in the supple-
mentary material. Recall that we generated 154 test datasets
each for MPE and MMAP (22 PCs x 7 gr values). In all
contingency tables, the number in the cell (,5) equals the
number of times (out of 154) that the scheme in the i-th row
was better in terms of average log-likelihood score than the
scheme in the j-th column. The difference between 154 and
the sum of the numbers in the cells (¢, j) and (7, ¢) equals the
number of times the scheme in the ¢-th row and j-th column
had identical log-likelihood scores.

From the MPE contingency table given in Table 1, we
observe that SSMP is superior to Max, ML, and Seq ap-
proximations. The Seq approximation is slightly better than
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the Max approximation, and ML is the worst-performing
scheme. For the harder MMAP task, we see a similar order-
ing among the competing schemes (see Table 1) with SSMP
dominating other schemes. In particular, SSMP outperforms
the Max and ML approximations in almost two-thirds of the
cases and the Seq method in more than half of the cases.

We also investigate the effectiveness of SSMP and other
baseline approaches when employed as initialization strate-
gies for Hill Climbing Search. These findings are illustrated
in the last two contingency tables given in Table 1. Notably,
SSMP outperforms all other baseline approaches in nearly
two-thirds of the experiments for both MPE and MMAP
tasks. These results demonstrate that SSMP can serve as an
effective initialization technique for anytime local search-
based algorithms.

YO 0N 2O
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(a) MPE (b) MMAP

Figure 2: Heat map showing the % difference in log-
likelihood scores between SSMP and Max approximation.
Blue represents Max’s superiority (negative values) and red
indicates SSMP better performance (positive values).

In Figure 2, via a heat-map representation, we show a
more detailed performance comparison between SSMP and
the Max approximation, which is a widely used baseline for
MPE and MMAP inference in PCs. In the heat-map repre-
sentation, the y-axis represents the datasets (ordered by the
number of variables), while the x-axis shows the query ra-
tio. The values in each cell represent the percentage differ-
ence between the mean log-likelihood scores of SSMP and
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CIFAR MNIST EMNIST
Max SSMP ML Seqg | Max SSMP ML Seq | Max SSMP ML Seq
Max 0 0 0 2 0 1 0 1 0 1 0 5
SSMP 9 0 9 9 9 0 9 9 7 0 7 7
ML 0 0 0 2 0 1 0 1 0 1 0 5
Seq 7 0 7 0 9 1 9 0 3 1 3 0

Table 2: Contingency tables comparing competing methods for MPE on CIFAR, MNIST and EMNIST datasets. Highlighted

values represent results for SSMP.

the Max approximation. Formally, let llssy,, and ll;,,, de-
note the mean LL scores of SSMP and Max approximation
respectively, then the percentage difference is given by

%Diff. = Ussmp = Umaz (7)

From the heatmap for MPE given in Figure 2(a), we ob-
serve that SSMP is competitive with the Max approximation
when the size of the query set is small. However, as the num-
ber of query variables increases, signaling a more challeng-
ing problem, SSMP consistently outperforms or has similar
performance to the Max method across all datasets, except
for accidents, pumsb-star, and book.

The heatmaps for MMAP are illustrated in Figure 2(b).
We see a similar trend as the one for MPE; SSMP remains
competitive with the Max approximation, particularly when
the number of query variables is small. While SSMP outper-
forms (with some exceptions) the Max approximation when
the number of query variables is large.

Finally, we present inference times in the supplement. On
average SSMP requires in the order of 7-10 micro-seconds
for MMAP inference on an A40 GPU. The Max approxi-
mation takes 7 milli-seconds (namely, SSMP is almost 1000
times faster). In comparison, as expected, the Seq and ML
approximations are quite slow, requiring roughly 400 to 600
milliseconds to answer MPE and MMARP queries. In the case
of our proposed method (SSMP), during the inference pro-
cess, the size of the SPN holds no relevance; its time com-
plexity is linear in the size of the neural network. On the
contrary, for the alternative methods, the inference time is
intricately dependent on the size of the SPN.

x 100

Results on the CIFAR-10 Dataset

We binarized the CIFAR-10 dataset using a variational au-
toencoder having 512 bits. We then learned a PC for each of
the 10 classes; namely, we learned a PC conditioned on the
class variable. As mentioned earlier, we randomly set 70%
of the variables as query variables. The contingency table for
CIFAR-10 is shown in Table 2. We observe that SSMP dom-
inates all competing methods while the Seq approximation
is the second-best performing scheme (although note that
Seq is computationally expensive).

Results on the MNIST and EMNIST Datasets

Finally, we evaluated SSMP on the image completion task
using the Binarized MNIST (Salakhutdinov and Murray
2008) and the EMNIST datasets (Cohen et al. 2017). As
mentioned earlier, we used the top 30% of the image as ev-
idence and estimated the bottom 70% by solving the MPE
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task over PCs using various competing methods. The con-
tingency tables for the MNIST and EMNIST datasets are
shown in Table 2. We observe that on the MNIST dataset,
SSMP is better than all competing schemes on 9 out of the
10 PCs, while it is inferior to all on one of them. On the EM-
NIST dataset, SSMP is better than all competing schemes on
7 out of the 10 PCs and inferior to all on one of the PCs.
Detailed results on the image datasets, including qualitative
comparisons, are provided in the supplement.

In summary, we find that, on average, our proposed
method (SSMP) is better than other baseline MPE/MMAP
approximations in terms of log-likelihood score. Moreover,
it is substantially better than the baseline methods when the
number of query variables is large. Also, once learned from
data, it is also significantly faster than competing schemes.

Conclusion and Future Work

In this paper, we introduced a novel self-supervised learning
algorithm for solving MMAP queries in PCs. Our contribu-
tions comprise a neural network approximator and a self-
supervised loss function which leverages the tractability of
PCs for achieving scalability. Notably, our method employs
minimal hyperparameters, requiring only one in the discrete
case. We conducted a comprehensive empirical evaluation
across various benchmarks; specifically, we experimented
with 22 binary datasets used in tractable probabilistic mod-
els community and three classic image datasets, MNIST,
EMNIST, and CIFAR-10. We compared our proposed neural
approximator to polytime baseline techniques and observed
that it is superior to the baseline methods in terms of log-
likelihood scores and is significantly better in terms of com-
putational efficiency. Additionally, we evaluated how our
approach performs when used as an initialization scheme
in stochastic hill climbing (local) search and found that it
improves the quality of solutions output by anytime local
search schemes. Our empirical results clearly demonstrated
the efficacy of our approach in both accuracy and speed.

Future work includes compiling PCs to neural net-
works for answering more complex queries that involve
constrained optimization; developing sophisticated self-
supervised loss functions; learning better NN architecture
for the given PC; generalizing our approach to arbitrarily
chosen query and evidence subsets; etc.
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Abstract

We present a unified framework called deep de-
pendency networks (DDNs) that combines de-
pendency networks and deep learning architec-
tures for multi-label classification, with a par-
ticular emphasis on image and video data. The
primary advantage of dependency networks is
their ease of training, in contrast to other prob-
abilistic graphical models like Markov networks.
In particular, when combined with deep learn-
ing architectures, they provide an intuitive, easy-
to-use loss function for multi-label classifica-
tion. A drawback of DDNs compared to Markov
networks is their lack of advanced inference
schemes, necessitating the use of Gibbs sam-
pling. To address this challenge, we propose
novel inference schemes based on local search
and integer linear programming for computing
the most likely assignment to the labels given
observations. We evaluate our novel methods
on three video datasets (Charades, TACoS, Wet-
lab) and three image datasets (MS-COCO, PAS-
CAL VOC, NUS-WIDE), comparing their per-
formance with (a) basic neural architectures and
(b) neural architectures combined with Markov
networks equipped with advanced inference and
learning techniques. Our results demonstrate the
superiority of our new DDN methods over the
two competing approaches.

1 INTRODUCTION

In this paper, we focus on the multi-label classification
(MLC) task and more specifically, on its two notable in-
stantiations, multi-label action classification (MLAC) for
videos and multi-label image classification (MLIC). At a
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high level, given a pre-defined set of labels (or actions) and
a test example (video or image), the goal is to assign each
test example to a subset of labels. It is well known that
MLC is notoriously difficult because, in practice, the labels
are often correlated, and thus, predicting them indepen-
dently may lead to significant errors. Therefore, most ad-
vanced methods explicitly model the relationship or depen-
dencies between the labels, using either probabilistic tech-
niques (Antonucci et al.,|2013;|Di1 Mauro et al., 20165 Guo
and Xue, 2013; [Tan et al.| [2015; Wang et al.|, 2008} |2014)
or non-probabilistic/neural methods (Chen et al., 2019albj
Kong et al., 2013} [Liu et al., 2022} [2021; Nguyen et al.|
2021} Papagiannopoulou et al.} 20155 Qu et al.,|2021;|Wang
et al.,2021a.b; [Weng et al.| 2023 |Zhou et al., 2023).

To this end, motivated by approaches that combine prob-
abilistic graphical models (PGMs) with neural networks
(NNs) (Johnson et al., 2016; Krishnan et al., [2015), we
jointly train a hybrid model, termed deep dependency net-
works (DDNs) (Guo and Weng|, 2020), as illustrated in Fig-
ure In a Deep Dependency Network (DDN), a con-
ditional dependency network sits on top of a neural net-
work. The underlying neural network transforms input data
(e.g., an image) into a feature set. The dependency net-
work (Heckerman et al.| [2000) then utilizes these features
to establish a local conditional distribution for each label,
considering not only the features but also the other labels.
Thus, at a high level, a DDN is a neuro-symbolic model
where the neural network extracts features from data and
the dependency network acts as a symbolic counterpart,
learning the weighted constraints between the labels.

However, a limitation of DDNs is that they rely on naive
techniques such as Gibbs sampling and mean-field infer-
ence for probabilistic reasoning and lack advanced prob-
abilistic inference techniques (Lowd, 2012; |Lowd and
Shamaei, 2011). This paper addresses these limitations
by introducing sophisticated inference schemes tailored
for the Most Probable Explanation (MPE) task in DDNs,
which involves finding the most likely assignment to the
unobserved variables given observations. In essence, a so-
lution to the MPE task, when applied to a probabilistic
model defined over labels and observed variables, effec-
tively solves the multi-label classification problem.
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Figure 1: Illustrating improvements from our new infer-
ence schemes for DDNs. The DDN learns relationships be-
tween labels, and the inference schemes reason over them
to accurately identify concealed objects, such as sports
ball.

More specifically, we propose two new methods for MPE
inference in DDNs. Our first method uses a random-walk
based local search algorithm. Our second approach uses
a piece-wise approximation of the log-sigmoid function to
convert the non-linear MPE inference problem in DDNs
into an integer linear programming problem. The latter can
then be solved using off-the-shelf commercial solvers such
as Gurobi (Gurobi Optimization, LLC, [2023)).

We evaluate DDNs equipped with our new MPE infer-
ence schemes and trained via joint learning on three video
datasets: Charades (Sigurdsson et al.,[2016), TACoS (Reg-
neri et al.,[2013)), and Wetlab (Naim et al., 2014}, and three
image datasets: MS-COCO (Lin et al., [2014), PASCAL
VOC 2007 (Everingham et al., [2010), and NUS-WIDE
(Chua et al., 2009). We compare their performance to
two categories of models: (a) basic neural networks (with-
out dependency networks) and (b) hybrids of Markov ran-
dom fields (MRFs), an undirected PGM, and neural net-
works equipped with sophisticated reasoning and learning
algorithms. Specifically, we employ three advanced ap-
proaches: (1) iterative join graph propagation (IJGP) (Ma-
teescu et al., 2010), a type of generalized Belief propaga-
tion method (Yedidia et al., 2000) for marginal inference,
(2) integer linear programming (ILP) based techniques for
computing most probable explanations (MPE) and (3) a
well-known structure learning method based on logistic
regression with ¢1-regularization (Lee et al., 2006; [Wain-
wright et al.,|2006)) for pairwise MRFs.

Via a detailed experimental evaluation, we found that, gen-
erally speaking, the MRF+NN hybrids outperform NNs, as
measured by metrics such as Jaccard index and subset accu-
racy, especially when advanced inference methods such as
IJGP are employed. Additionally, DDNs, when equipped
with our novel MILP-based MPE inference approach, of-

ten outperform both MRF+NN hybrids and NNs. This en-
hanced performance of DDNs with advanced MPE solvers
is likely attributed to their superior capture of dense label
interdependencies, a challenge for MRFs. Notably, MRFs
rely on sparsity for efficient inference and learning.

2 PRELIMINARIES

A log-linear model or a Markov random field (MRF), de-
noted by M, is an undirected probabilistic graphical model
(Koller and Friedman, 2009) that is widely used in many
real-world domains for representing and reasoning about
uncertainty. MRFs are defined as a triple (X, F, ©) where
X ={Xi,...,X,} is a set of Boolean random variables,
F = {f1,-.., fm} is a set of features such that each fea-
ture f; (we assume that a feature is a Boolean formula) is
defined over a subset D; of X, and © = (64,...,60,,) are
real-valued weights or parameters, namely V0, € ©; 0; €
R such that each feature f; is associated with a parameter
0;. M represents the following probability distribution:

P(x) = Z(l@) exp {Z 0; fi (XDi)} ey

i=1

where x is an assignment of values to all variables in
X, xp, is the projection of x on the variables D, of f;,
fi(xp,) is an indicator function that equals 1 when xp,
evaluates f; to True and is 0 otherwise, and Z(©) is the
normalization constant called the partition function.

We focus on three tasks over MRFs: (1) structure learning;
(2) posterior marginal inference; and (3) finding the most
likely assignment to all the non-evidence variables given
evidence (this task is often called most probable explana-
tion or MPE inference in short). All of these tasks are at
least NP-hard in general, and therefore approximate meth-
ods are often preferred over exact ones in practice.

A popular and fast method for structure learning is to
learn binary pairwise MRFs (MRFs in which each feature
is defined over at most two variables) by training an ¢;-
regularized logistic regression classifier for each variable
given all other variables as features (Lee et al.,|2006; [Wain-
wright et al.| [2006). ¢;-regularization induces sparsity in
that it encourages many weights to take the value zero. All
non-zero weights are then converted into conjunctive fea-
tures. Each conjunctive feature evaluates to True if both
variables are assigned the value 1 and to False otherwise.
Popular approaches for posterior marginal inference are the
Gibbs sampling algorithm and generalized Belief propaga-
tion (Yedidia et al., [2000) techniques such as Iterative Join
Graph Propagation (Mateescu et al., 2010). For MPE in-
ference, a popular approach is to encode it as an integer
linear programming (ILP) problem (Koller and Friedman,
2009) and then use off-the-shelf approaches such as|Gurobi
Optimization, LL.C|(2023)) to solve the ILP.



Shivvrat Arya, Yu Xiang, Vibhav Gogate

Dependency Networks (DNs) (Heckerman et al., |2000)
represent the joint distribution using a set of local condi-
tional probability distributions, one for each variable. Each
conditional distribution defines the probability of a variable
given all of the others. A DN is consistent if there exists a
joint probability distribution P(x) such that all conditional
distributions P;(z;|x_;) where x_; is the projection of x
on X \ {X;}, are conditional distributions of P(x).

A DN is learned from data by learning a classifier (e.g.,
logistic regression, multi-layer perceptron, etc.) for each
variable, and thus DN learning is embarrassingly parallel.
However, because the classifiers are independently learned
from data, we often get an inconsistent DN. It has been con-
jectured (Heckerman et al., |2000) that most DNs learned
from data are almost consistent in that only a few parame-
ters need to be changed in order to make them consistent.

The most popular inference method over DN is fixed-order
Gibbs sampling (Liu, 2008). If the DN is consistent, then
its conditional distributions are derived from a joint dis-
tribution P(x), and the stationary distribution (namely the
distribution that Gibbs sampling converges to) will be the
same as P(x). If the DN is inconsistent, then the stationary
distribution of Gibbs sampling will be inconsistent with the
conditional distributions.

3 TRAINING DEEP DEPENDENCY
NETWORKS

In this section, we detail the training process for our pro-
posed Deep Dependency Network model (Guo and Weng,
2020)), the hybrid framework for multi-label action classifi-
cation in videos and multi-label image classification. Two
key components are trained jointly: a neural network and
a conditional dependency network. The neural network is
responsible for extracting high-quality features from video
segments or images, while the dependency network mod-
els the relationships between these features and their corre-
sponding labels, supplying the neural network with gradi-
ent information regarding these relationships.

3.1 Framework

Let V denote the set of random variables corresponding
to the pixels and v denote the RGB values of the pixels
in a frame or a video segment. Let E denote the (contin-
uous) output nodes of a neural network which represents
a function N' : v — e, that takes v as input and out-
puts an assignment e to E. Let X = {X;,...,X,} de-
note the set of indicator variables representing the labels.
For simplicity, we assume that |E| = |X| = n. Given
(V,E, X), a deep dependency network (DDN) is a pair
(N, D) where N is a neural network that maps V. = v
to E = e and D is a conditional dependency network
(Guo and Gu, |2011) that models P(x|e) where e = N (v).

/ e1,€2,..... en

(CNN, MSRN, Q2L)

Frames

Dependency Layer

Feature Extractor
\ Deep Dependency Network Architecture

/

Figure 2: Illustration of Dependency Network for multi-
label video classification. The NN takes video clips
(frames) as input and outputs the features e, eo, ..., e, (de-
noted by red colored nodes). These features are then used
by the sigmoid output (o1, . . ., 0,,) of the dependency layer
to model the local conditional distributions.

The conditional dependency network represents the dis-
tribution P(x|e) using a collection of local conditional
distributions P;(x;|x_;, e), one for each label X;, where

X_i = {xla"'7xi717xi+17~"axn}-

Thus, a DDN is a discriminative model and represents the
conditional distribution P(x|v) using several local con-
ditional distributions P(z;|x_;,e) and makes the follow-
ing conditional independence assumptions P (z;|x_;,v) =
P(xz]x_;,e) where e = N(v). Figure[2|demonstrates the
DDN architecture.

3.2 Learning

We employ the conditional pseudo log-likelihood loss
(CPLL) (Besag,|1975) in order to jointly train the two com-
ponents of DDN, drawing inspiration from the DDN train-
ing approach outlined by |(Guo and Weng (2020). For each
training example (v, x), we send the video/image through
the neural network to obtain a new representation e of v.
In the dependency layer, we learn a classifier for each la-
bel X; to model the conditional distribution P;(z;|x_;,e).
More precisely, with the representation of the training in-
stance (e, x), each sigmoid output of the dependency layer
indexed by 7 and denoted by o; (see figure [2) uses X; as
the class variable and (EUX _;) as the attributes. The joint
training of the model is achieved through CPLL applied to
the outputs of the dependency layer (o;’s).

Let O represent the parameter set of the DDN. We em-
ploy gradient-based optimization methods (e.g., backprop-
agation), to minimize the Conditional Pseudo-Likelihood
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(CPLL) loss function given below

L(©,v,x) ZlogP (zile =N(v),x_;;0) (2)

4 MPE INFERENCE IN DDNs

Unlike a conventional discriminative model, such as a neu-
ral network, in a DDN, we cannot predict the output labels
by simply making a forward pass over the network. This is
because each sigmoid output o; (which yields a probabil-
ity distribution over X;) of the dependency layer requires
an assignment x_; to all labels except x; and x_; is not
available at prediction time. Consequently, it is imperative
to employ specialized techniques for obtaining output la-
bels in multilabel classification tasks within the context of
DDNs .

Given a DDN representing a distribution P(x|e) where
e = N(v), the multilabel classification task can be solved
by finding the most likely assignment to all the unobserved
variables based on a set of observed variables. This task
is also called the most probable explanation (MPE) task.
Formally, we seek to find x* such that:

x* = argmax P(x | ) 3)

X

Next, we present three algorithms for solving the MPE task.

4.1 Gibbs Sampling

To perform MPE inference, we first send the video (or
frame) through the neural network to yield an assignment
e to all variables in E. Then given e, we generate N sam-
ples (x(M, ..., xN)) via Gibbs sampling (see for example
Koller and Friedman|(2009)), a classic MCMC technique.
These samples can then be used to estimate the marginal
probability distribution of each label X; using the follow-
ing mixture estimator (Liul 2008)):

N
Pini) = P (mxe) @
J=1

Given an estimate of the marginal distribution P; (z;|v) for
each variable X;, we can estimate the MPE assignment us-
ing the standard max-marginal approximation:

maxP (x;le)
H

In other words, we can construct an approximate MPE as-
signment by finding the value z; for each variable that max-
imizes P; (x;|e).

maxP (x|e) =~

4.2 Local Search Based Methods

Local search algorithms (see for example [Selman et al.
(1993)) systematically examine the solution space by mak-
ing localized adjustments, with the objective of either find-
ing an optimal solution or exhausting a pre-established time
limit. They offer a viable approach for solving the MPE
inference task in DDNs. These algorithms, through their
structured exploration and score maximization, are effec-
tive in identifying near-optimal label configurations.

In addressing the MPE inference within DDNs, we
define the objective function for local search as
>t log (Pi(z; | x_;,e)), where e is the evidence
provided by N. We propose to use two distinct local
search strategies for computing the MPE assignment:
random walk and greedy local search.

In random walk (RW), the algorithm begins with a random
assignment to the labels and at each iteration, flips a ran-
dom label (changes the value of the label from a 1 to a O or
a0toal)toyield a new assignment. At termination, the
algorithm returns the assignment with the highest score ex-
plored during the random walk. In greedy local search, the
algorithm begins with a random assignment to the labels,
and at each iteration, with probability p flips a random la-
bel to yield a new assignment and with probability 1 — p
flips a label that yields the maximum improvement in the
score. At termination, the algorithm returns the assignment
with the highest score explored during its execution.

4.3 Multi-Linear Integer Programming

In this section, we present a novel approach for MPE infer-
ence in DDNs by formulating the problem as a Second-
Order Multi-Linear Integer Programming task. Specifi-
cally, we show that the task of maximizing the scoring
function )" | log (P;(x; | x_;,€)) is equivalent to the
following optlmlzatlon problem (derivation is provided in
the supplementary material):

max1mlzez zilog P 4+ (1 — x;) log(1 — F))

=1

subject to:
PiZJ(Zi), VZE{L,TL}
le| x|
Zw”e] + Zvlkxk +b;, Vie{l,...,n}
k;ﬁz
z; €{0,1}, Vie{l,...,n}
)
Here, P, = P;(z;|x_;,e) and w;;’s and v;,’s denote

the weights associated with e and x for P;, respectively.
The bias term for each P; is denoted by b;. In this con-
text, z; represents the values acquired prior to applying
the sigmoid activation function. Substituting the constraint
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Pi(zi|x_i,e) = 0(2) = {7o= in the objective and
simplifying, we get
maximize Z x;z; — log (1 + €*) 6)
o i=1
subject to:
le] x|
Zi:Zwijej—‘rZUika—Fbi, ViE{l,...,’rL} 7
j=1 k=1
ki
x; €{0,1}, Vie{l,...,n} (8)

The optimal value for x corresponds to the solution of
this optimization problem. The second term in the ob-
jective specified in equation [6] comprises logarithmic and
exponential functions, which are non-linear, thereby mak-
ing it a non-linear optimization problem. To address this
non-linearity, we propose the use of piece-wise linear ap-
proximations(Asghari et al.| 2022} GeiBler et al.,2012; |[Ku-
mar, [2007; [Li et al., [2022; [Lin et al., 2013; Rovatti et al.,
2014) for these terms. Further details about the piece-
wise linear approximation can be found in the supplement.
Let g(z;) represent the piece-wise linear approximation of
log (1 + e*), then the optimization problem can be ex-
pressed as:

n

maximize Z rizi — 9(2)

Y
subject to:
le| x| ©)
zZi = sz'jej +Zvikl’k +bi, Vie{l,...,n}
j=1 k=1
ki
z; €{0,1}, Vi€ {l,...,n}

The optimization problem given in equation[9is an integer
multilinear program of order 2 because it includes terms
of the form z;x; where both z; and x; take values from
the set {0,1}. Since x;x; corresponds to a “logical and”
between two Boolean variables, all such expressions can
be easily encoded as linear constraints yielding an integer
linear program (ILP) (see the supplementary material for
an example).

In our experiments, we solved the ILP using Gurobi
(Gurobi Optimization, LLC| [2023), which is an anytime
ILP solver. Another useful feature of the ILP formulation
is that we can easily incorporate prior knowledge (e.g., an
image may not have more than ten objects/labels) into the
ILP under the assumption that the knowledge can be reli-
ably modeled using linear constraints.

S EXPERIMENTAL EVALUATION

In this section, we evaluate the proposed methods on
two multi-label classification tasks: (1) multi-label activity
classification using three video datasets; and (2) multi-label
image classification using three image datasets. We begin
by describing the datasets and metrics, followed by the ex-
perimental setup, and conclude with the results. All models
were implemented utilizing PyTorch and were trained and
evaluated on a machine with an NVIDIA A40 GPU and an
Intel(R) Xeon(R) Silver 4314 CPU.

5.1 Datasets and Metrics

We evaluated our algorithms on three video datasets: (1)
Charades (Sigurdsson et al., [2016)); (2) TACoS (Regneri
et al., 2013); and (3) Wetlab (Naim et al., 2015). Cha-
rades dataset comprises videos of people performing daily
indoor activities while interacting with various objects. We
adopted the train-test split instructions given in PySlowFast
(Fan et al., [2020) with 7,986 training and 1,863 validation
videos. TACoS consists of third-person videos of a per-
son cooking in a kitchen. The dataset comes with hand-
annotated labels of actions, objects, and locations for each
video frame. From the complete set of these labels, we
selected 28 labels resulting in 60,313 training frames and
9,355 test frames across 17 videos. Wetlab features exper-
imental activities in labs, consisting of five training videos
(100,054 frames) and one test video (11,743 frames) with
57 distinct labels.

For multi-label image classification (MLIC), we examined:
(1) MS-COCO (Lin et al.,|2014); (2) PASCAL VOC 2007
(Everingham et al.,[2010); and (3) NUS-WIDE (Chua et al.|
2009). MS-COCO, a well-known dataset for detection and
segmentation, comprises 122,218 labeled images with an
average of 2.9 labels per image. We used its 2014 version.
NUS-WIDE is a real-world web image dataset that contains
269,648 images from Flickr. Each image has been manu-
ally annotated with a subset of 81 visual classes that include
objects and scenes. PASCAL VOC 2007 contains 5,011
train-validation and 4,952 test images, with each image la-
beled with one or more of the 20 available object classes.

We follow the instructions provided in (Qu et al.| 2021) to
do the train-test split for NUS-WIDE and PASCAL VOC.
We evaluated the performance on the TACoS, Wetlab, MS-
COCO, NUS-WIDE, and VOC datasets using Subset Ac-
curacy (SA), Jaccard Index (JI), Hamming Loss (HL),
Macro F1 Score (Macro F1), Micro F1 Score (Micro F1)
and F1 Score (F1). With the exception of Hamming Loss,
superior performance is indicated by higher scores in all
considered metrics. We omit SA for the Charades dataset
due to the infeasibility of achieving reasonable scores given
its large label space. Additionally, Hamming Loss (HL)
has been excluded for the MS-COCO dataset as the perfor-
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mance of all methods is indistinguishable.

Given that the focus in MPE inference is on identifying
the most probable label configurations rather than individ-
ual label probabilities, the use of Mean Average Precision
(mAP) as a performance metric is not applicable to our
study. Therefore, our primary analysis relies on SA, JI,
HL, Macro F1, Micro F1, and F1. Precision-based metrics
are detailed in the supplementary material.

5.2 Experimental Setup and Methods

We used three types of architectures in our experiments:
(1) Baseline neural networks, which are specific to each
dataset; (2) neural networks augmented with MRFs, which
we will refer to as deep random fields or DRFs in short; and
(3) a dependency network on top of the neural networks
called deep dependency networks (DDNs).

Neural Networks. We choose four different types of neu-
ral networks, and they act as a baseline for the experiments
and as a feature extractor for DRFs and DDNs. Specifi-
cally, we experimented with: (1) 2D CNNs, (2) 3D CNNs,
(3) transformers, and (4) CNNs with attention module and
graph attention networks (GAT) (Velickovic et al.| [2018).
This helps us show that our proposed method can improve
the performance of a wide variety of neural architectures,
even those which model label relationships, because unlike
the latter, it performs probabilistic inference.

For the Charades dataset, we use the PySlowFast (Fan
et al., 2020) implementation of the SlowFast Network (Fe-
ichtenhofer et al., 2019) (a state-of-the-art 3D CNN for
video classification). For TACoS and Wetlab datasets, we
use InceptionV3 (Szegedy et al.| |2016)), a state-of-the-art
2D CNN model for image classification. For the MS-
COCO dataset, we used Query2Label (Q2L) (Liu et al.|
2021)), which uses transformers to pool class-related fea-
tures. Q2L also learns label embeddings from data to
capture the relationships between the labels. Finally, we
used the multi-layered semantic representation network
(MSRN) (Qu et al., [2021) for NUS-WIDE and PASCAL
VOC. MSRN also models label correlations and learns se-
mantic representations at multiple convolutional layers. We
adopt pre-trained models and hyper-parameters from ex-
isting repositories for Charades, MS-COCO, NUS-WIDE,
and PASCAL VOC. For TaCOS and Wetlab datasets, we
fine-tuned an InceptionV3 model that was pre-trained on
the ImageNet dataset.

Deep Random Fields (DRFs). As a baseline, we used a
model that combines MRFs with neural networks. This
DRF model is similar to DDN except that we use an
MREF instead of a DN to compute P(x|e). We trained
the MRFs generatively; namely, we learned a joint distri-
bution P(x,e), which can be used to compute P(x|e) by
instantiating evidence. We chose generative learning be-

cause we learned the structure of the MRFs from data, and
discriminative structure learning is slow in practice (Koller
and Friedman, [2009)).

For inference over MRFs, we used Gibbs sampling (GS),
Iterative Join Graph Propagation (IJGP) (Mateescu et al.|
2010), and Integer Linear Programming (ILP) methods.
Thus, three versions of DRFs corresponding to the infer-
ence scheme were used. We refer to these schemes as
DRF-GS, DRF-ILP, and DRF-1JGP, respectively. Note that
IJGP and ILP are advanced schemes, and we are unaware
of their use for multi-label classification. Our goal is to
test whether advanced inference schemes help improve the
performance of deep random fields.

Deep Dependency Networks (DDNs). We trained the
Deep Dependency Networks (DDNs) using the joint learn-
ing loss described in equation [2| We examined four unique
inference methods for DDNs: (1) DDN-GS, employing
Gibbs Sampling; (2) DDN-RW, leveraging a random walk
local search; (3) DDN-Greedy, implementing a greedy lo-
cal search; and (4) DDN-ILP, utilizing Integer Linear Pro-
gramming to optimize the objective given in equation [9}
It is noteworthy that, until now, only DDN-GS has been
used for inference in Dependency Networks. DDN-RW
and DDN-Greedy, which are general-purpose local search
techniques, are our proposals for MPE inference on De-
pendency Networks. Lastly, DDN-ILP introduces a novel
approach using optimization techniques with the objective
of enhancing MPE inference on dependency networks.

Hyperparameters. For DRFs, in order to learn a sparse
structure (using the logistic regression with ¢; regulariza-
tion method of Wainwright et al.|(20006)), we increased the
regularization constant associated with the ¢; regulariza-
tion term until the number of neighbors of each node in G
is bounded between 2 and 10. We enforced this sparsity
constraint in order to ensure that the inference schemes,
specifically IJGP and ILP, are accurate and the model does
not overfit the training data. IJGP, ILP, and GS are anytime
methods; for them, we used a time-bound of one minute
per example.

For DDNs, we used ¢; regularization for the dependency
layer. Through cross-validation, we selected the regulariza-
tion constants from the set {0.1,0.01,0.001}. In the con-
text of joint learning, the learning rates of the DDN model
were adjusted using an extended version of the learning
rate scheduler from PySlowFast (Fan et al., 2020). We
impose a strict time constraint of 60 seconds per exam-
ple for DDN-GS, DDN-RW, DDN-Greedy, and DDN-ILP.
The DDN-ILP method is solved using |(Gurobi Optimiza-
tion, LLC (2023) and utilizes accurate piece-wise linear
approximations for non-linear functions, subject to a pre-
defined error tolerance of 0.001.
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Table 1: Comparison of our methods with the feature extractor for MLAC. The best/second best values are bold/underlined.

Method Charades TACoS Wetlab
JI HL | MacroF1 MicroF1 F1 SA JI HL| MacroF1 MicroF1 F1 SA JI HL | MacroFl1 MicroF1 F1
SlowFast 029 0.052 0.32 045 0.42

InceptionV3 040 0.61 0.082 0.26 0.48 0.44 | 035 0.64 0.017 0.24 0.76 0.72
DRF - GS 022 0.194 0.16 0.31 0.28 | 0.47 0.65 0.044 0.54 0.75 0.70 | 0.35 0.52 0.058 0.22 0.69 0.68
DRF - ILP 031 0.067 0.18 0.21 022 | 0.51 0.65 0.030 0.42 0.73 0.66 | 0.60 0.73 0.014 0.27 0.81 0.77
DRF-1JGP | 0.32 0.054 0.19 0.29 0.26 | 0.44 0.70 0.043 0.54 0.83 0.78 | 0.58 0.74 0.014 0.24 0.82 0.77
DDN - GS 031 0.054 0.30 043 041 | 0.54 0.69 0.041 0.52 0.74 0.68 | 0.63 0.78 0.011 0.28 0.80 0.79
DDN - RW 0.30  0.056 0.13 0.24 022 | 046 0.64 0.042 0.59 0.77 0.75 | 046 0.63 0.025 0.22 0.66 0.68
DDN - Greedy | 0.31 0.056 0.33 0.44 041 | 0.56 0.69 0.040 0.61 0.80 0.75 | 0.55 0.68 0.014 0.28 0.80 0.79
DDN - ILP 0.33 0.052 0.36 047 044 | 0.63 0.72 0.040 0.62 0.79 0.76 | 0.65 0.76 0.014 0.28 0.81 0.80

Table 2: Comparison of our methods with the feature extractor for MLIC. The best/second best values are bold/underlined.

Method MS-COCO NUS-WIDE PASCAL-VOC

SA JI  MacroF1 MicroF1 F1 SA JI HL| MacroF1 MicroF1 F1 SA JI  HL| MacroF1 MicroF1 F1
Q2L 0.51 0.80 0.86 0.86 0.88

MSRN 031 0.64 0.015 0.56 0.73 0.71 | 0.71 0.85 0.015 0.89 0.90 0.91
DRF - GS 0.35 0.69 0.81 0.82 0.79 | 0.28 0.55 0.020 0.23 0.63 0.62 | 0.73 0.83 0.021 0.75 0.85 0.83
DREF - ILP 0.54 0.82 0.84 0.83 0.82 ] 032 059 0.016 0.28 0.70 0.67 | 0.76 0.88 0.019 0.81 0.87 0.87
DRF-1JGP | 0.55 0.82 0.85 0.85 0.85 | 032 0.63 0.017 0.32 0.71 0.69 | 0.76 0.87 0.019 0.77 0.86 0.86
DDN - GS 0.55 0.82 0.86 0.87 0.88 | 0.33 0.62 0.016 0.52 0.71 0.69 | 0.76 0.87 0.008 0.94 0.94 0.96
DDN - RW 0.53 0.81 0.82 0.85 0.86 | 0.25 0.56 0.016 0.26 0.70 0.68 | 0.82 0.89 0.006 0.94 0.94 0.93
DDN - Greedy | 0.55 0.82 0.85 0.86 0.87 | 0.30 0.61 0.016 0.29 0.72 0.69 | 0.86 091 0.007 0.95 0.95 0.96
DDN - ILP 0.55 0.83 0.85 0.86 0.88 | 0.33 0.65 0.015 0.51 0.74 0.71 | 0.89 0.95 0.006 0.96 0.96 0.97

5.3 Results

We compare the baseline neural networks with three ver-
sions of DRFs and four versions of DDNs using the six
metrics and six datasets given in Section The results
are presented in tables[Tand

Comparison between baseline neural network and
DRFs. We observe that IJGP and ILP outperform the base-
line neural networks (which include transformers for some
datasets) in terms of JI, SA, and HL on four out of the six
datasets. IJGP typically outperforms GS and ILP on JI.
In terms of F1 metrics, IIGP and ILP methods tend to per-
form better than Gibbs Sampling (GS) approaches, but they
are less effective than baseline NNs. ILP’s superiority in
SA—a metric that scores 1 for an exact label match and 0
otherwise—can be attributed to its precise most probable
explanation (MPE) inference. An accurate MPE inference,
when paired with a precise model, is likely to achieve high
SA scores. Note that getting a higher SA is much harder in
datasets having large number of labels. Specifically, SA
does not distinguish between models that predict almost
correct labels and completely incorrect outputs. We ob-
serve that advanced inference schemes, particularly IJGP
and ILP, are superior on average to GS.

Comparison between baseline neural networks and
DDNs. Our study has shown that the DDN model with the
proposed MILP based inference method is superior to the
baseline neural networks in four out of six datasets, with
notable enhancements in SA and JI metrics, such as an
18%, 23%, and 30% improvement in SA for the PASCAL-
VOC, TACoS, and Wetlab datasets, respectively. More-
over, the MILP-based method either significantly surpasses
or matches all alternative inference strategies for DDNs.

While Gibbs Sampling-based inference is typically better
than the Random Walk based approach in DDN:s, its per-
formance against the greedy sampling method varies.

We observe that on the MLIC task, the DDN with advanced
MPE inference outperforms Q2L and MSRN, even though
both Q2L and MSRN model label correlations. This sug-
gests that DDNGs are either able to uncover additional rela-
tionships between labels during the learning phase or better
reason about them during the inference phase or both. In
particular, both Q2L and MSRN do not use MPE inference
to predict the labels because they do not explicitly model
the joint probability distribution over the labels.

Figure |3| displays the images and their predicted labels by
both Q2L and DDN-ILP on the MS-COCO dataset. Our
method not only adds the labels omitted by Q2L but also
eliminates several incorrect predictions. In the first two im-
ages, our approach rectifies label omissions by Q2L, con-
forming to the ground truth. In the third image, our method
removes erroneous predictions. The last image illustrates a
case where DDN underperforms compared to Q2L by fail-
ing to identify a ground-truth label. Additional instances
are available in the appendix.

Comparison between DRFs and DDNs. Based on our ob-
servations, we found that jointly trained DDNs in conjunc-
tion with the proposed inference method consistently lead
to superior performance compared to the top-performing
DRFs across all datasets. Nonetheless, in certain situations,
DRFs that employ advanced inference strategies produce
results that closely match those of DDNs for both JI and
SA, making DRFs a viable option, particularly when lim-
ited GPU resources are available for training and optimiza-
tion of both JI and SA is prioritized.
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Figure 3: Comparison of labels predicted by Q2L (Liu et al., and our DDN-ILP scheme on the MS-COCO dataset.
Labels in bold represent the difference between the predictions of the two methods, assuming that a threshold of 0.5 is used
(i.e., every label whose probability > 0.5 is considered a predicted label). Due to the MPE focus in DDN-ILP, only label
configurations are generated, omitting corresponding probabilities. The first three column shows examples where DDN
improves over Q2L, while the last column (outlined in red) shows an example where DDN is worse than Q2L.

In summary, the empirical results indicate that Deep De-
pendency Networks (DDNs) equipped with advanced infer-
ence strategies consistently outperform conventional neural
networks and MRF+NN hybrids in multi-label classifica-
tion tasks. Furthermore, these advanced inference methods
surpass traditional sampling-based techniques for DDNs.
The superior performance of both DDNs and DRFs uti-
lizing advanced inference techniques supports the value of
such mechanisms and suggests that further advancement in
this area has the potential to unlock additional capabilities
within these models.

6 RELATED WORK

A large number of methods have been proposed that train
PGMs and NNs jointly. For example, [Zheng et al.| (2015))
proposed to combine conditional random fields (CRFs) and
recurrent neural networks (RNNs), [Arnab et al.| (2016);
[Carsson et al. (2017}, [2018); [Schwing and Urtasun| (2013))
showed how to combine CNNs and CRFs, |Chen et al.
proposed to use densely connected graphical mod-
els with CNNs, and [Johnson et al.| (2016) combined la-
tent graphical models with neural networks. The com-
bination of PGMs and NNs has also been applied to im-
prove performance on a wide variety of real-world tasks.
Notable examples include human pose estimation (Liang

let al.l 2018}, [Song et al.| 2017 [Tompson et al., 2014} [Yang
2016)), semantic labeling of body parts (Kirillov et al.,
2016), stereo estimation (Knobelreiter et al., [2017), lan-
guage understanding (Yao et al., 2014), face sketch syn-
thesis (Zhu et al., and crowd-sourcing aggregation

(L1 et al., 2021)). These hybrid models have also been
used for solving a range of computer vision tasks such as

semantic segmentation (Arnab et al.} 2018}, |Guo and Dou,
2021)), image crowd counting 2017), visual re-
lationship detection 2022), modeling for epilep-
tic seizure detection (Craley et al.,[2019), face sketch syn-
thesis (Zhang et al.| [2020), semantic image segmentation
(Chen et al] 2018} [Lin et al| 2016), 2D Hand-pose Esti-
mation (Kong et al.,[2019), depth estimation from a single
monocular image 2015)), animal pose tracking
and pose estimation (Chen and Yuille]
2014).

To date, dependency networks have been used to solve
various tasks such as collective classification (Neville and|
2003), binary classification (Gdmez et al., 2006]
2008), multi-label classification (Guo and Gul, [201T), part-
of-speech tagging (Tarantola and Blanc, [2002), relation
prediction (Figueiredo et al.,[2021), text classification (Guo

2020) and collaborative filtering (Heckerman|
et al., 2000). However, DDNs have traditionally been re-

stricted to Gibbs sampling (Heckerman et al., [2000) and
mean-field inference (Lowd and Shamaeil 2011)), showing
limited compatibility with advanced probabilistic inference
methods [2012). This study marks the inaugural at-
tempt to incorporate advanced inference methods for the
MPE task in DDNs, utilizing jointly trained networks for
MLC scenarios.
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7 CONCLUSION AND FUTURE WORK

More and more state-of-the-art methods for challenging
applications of computer vision tasks usually use deep
neural networks. Deep neural networks are good at ex-
tracting features in vision tasks like image classification,
video classification, object detection, image segmentation,
and others. Nevertheless, for more complex tasks involv-
ing multi-label classification, these methods cannot model
crucial information like inter-label dependencies and infer
about them. In this work, we present novel inference al-
gorithms for Deep Dependency Networks (DDNs), a pow-
erful neuro-symbolic approach, that exhibit consistent su-
periority compared to traditional neural network baselines,
sometimes by a substantial margin. These algorithms offer
an improvement over existing Gibbs Sampling-based in-
ference schemes used for DDNs, without incurring signifi-
cant computational burden. Importantly, they have the ca-
pacity to infer inter-label dependencies that are commonly
overlooked by baseline techniques utilizing transformers,
attention modules, and Graph Attention Networks (GAT).
By formulating the inference procedure as an optimization
problem, our approach permits the integration of domain-
specific constraints, resulting in a more knowledgeable and
focused inference process. In particular, our optimization-
based approach furnishes a robust and computationally ef-
ficient mechanism for inference, well-suited for handling
intricate multi-label classification tasks.

Avenues for future work include: applying the setup de-
scribed in the paper to other multi-label classification tasks
in computer vision, natural language understanding, and
speech recognition; converting DDNs to MRFs for bet-
ter inference (Lowd, 2012)); exploring and validating the
neuro-symbolic benefits of DDNs such as improved accu-
racy in predictions and enhanced interpretability of model
decisions; etc.
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A DERIVING THE OBJECTIVE FUNCTION FOR MOST PROBABLE EXPLANATIONS
(MPE)

Let us consider the scoring function we aim to maximize, given as follows:

maximizeZlog (Pi(z; | x—i,€)) (10)
i=1

Given that z; is binary, namely, x; € {0, 1}, we can express the scoring function as follows:

maximizez (:17, log (Pi(X;=1]x_;,e))+ (1 —xz;)log (1 — P(X; =1 X—ue))) (11)
i=1
where
le] ||
P(X;=1|x_;,e) =0 Zwijej + Zvikxk +b;
Jj=1 1;;1

Let p; = P;(X; = 1|x_;,€) and z; = lee:ll wije; + ZL’il vk + b;. Then, the MPE task, which involves optimizing

k#i
the scoring function given above, can be expressed as:
maximizez (z;logp; + (1 — ;) log(1 — p;)) (12)
” i=1
subject to:
pi=o0(z), Yie{l,...,n} (13)
le] x|
zi:Zwijej—FZvikxk—Fbi, vie{l,...,n} (14)
j=1 k=1
k#i
z; € {0,1}, Vie{l,...,n} (15)

The first constraint in the formulation, as expressed by [I3] pertains to the sigmoid function employed in the logistic
regression module. The subsequent constraint, defined by formalizes the product between the weights and inputs in
the Dependency Network (DN). Here, e; represents evidence values supplied to the DN, while x represents the decision
variables that are subject to optimization. Finally, [15|specifies that the input variables must be constrained to integer values
of Oor 1.

The assembled constraints collectively simulate a forward pass through the network. The objective function is designed
to maximize the scoring function pertinent to the Most Probable Explanation (MPE). This framework adeptly aligns the
optimization task to maximize the MPE score.

The substitution of the constraint P;(z;|x_;,e) = o(z;) = He%m into the objective function and the subsequent alge-

braic simplification result in a simplified formulation as follows:

xilogp; + (1 — ;) log(1 — py)

e e
:xi10g<1+ezi> + (1 — ;) log (1— 1+ezi>

e 1
:xilog(1+eZi>+(1—xi)log<1+eZi) (16)

= z;loge® — x;log(l + €*) —log(1l + e*) + x; log(1 + €*)
= z;loge* — log(1 + e*)
= x,;2; — log(1 + )
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Substituting equation [I6]in the objective function of our optimization problem, we get

maximizez x;z; — log (1 + €*) a7
” i=1
subject to:
le] x|
Zizzwijej+zvikxk+bi7 Vi € {1,...,n} (18)
j=1 k=1
k#i
z;€{0,1}, Vie{l,....n} (19)

A.A Utilizing Piecewise Linear Approximation for Non-linear Functions

Figure SF4: Piece-wise linear approximation of log(1 + e*%)
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The objective function expressed in equation equationis non-linear due to the inclusion of the term log(1 + e*). f(2)
can be used as a piecewise approximation for log(1 + e*).

z z>1
flz)={ e s <1 (20)
log(1 + €*) otherwise

To obtain a piecewise linear approximation of log(1 4 e*¢), a single linear function suffices for z > 1, while the majority
of the linear pieces are utilized for approximating the function near 1. A piecewise linear approximation of the function is
detailed in the figure[SF4. We employ five segments for the approximation. These piecewise functions can be integrated as
linear constraints, facilitating the conversion of the non-linear objective into a linear objective with ease. We also present
the piecewise equations for the approximation as follows -
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Table ST3: Piecewise Linear Approximation for
g(z) =~ log(1 + e*)

z 9(z)

—00,-3.257) 0

3.257,-0.998) (27*+275+2764278)2 4 0.379
0.998,0.602) (2724273 42714277+ 27824 0.715
0.602, 2.584) 271 4272 4 274 1 277)2 +0.492
2.584, +00] z

]
[
[
[
[

Thus after replacing log(1 4 e*#) with its piece-wise approximation (g(z)) we get

maximize Z iz — g(2;)

X,Z,Q

i=1

subject to:
le| |x|

Z; = sz’jej + Zvikxk +b, Vie{l,...,n}
j=1

i

z;€{0,1}, Vie{l,...,n}

9(zi) = a; x 04 ag x (274 +27° 4270 4 27%)2, + 0.379)+

sz x (2724273 4274 4277 +278)2, 4+ 0.715)+

g X (2714272 4274 12772 4 0.492)+ Q1)
asizi, Vie{l,...,n}

5
daji=1, Viefl,...,n}
j=1

Qi € {071}, Vi e {1,2,3,4,5},Vi€ {1,...,77,}
an=1= 2 <3257, Yie{l,....n)

;= 1= —3.257 < z < —0.998, Vie{l,....n}
az; =1 = —0.998 < z; < 0.602, VZ'E{I,...,T[,}
ag; =1=0.602 < z; < 2.584, Vie {17 S ,n}
as, =1 = z; > 2.584, VZG{L,TL}

The utilization of binary variables, c;, allows for a piece-wise linear approximation of the logarithm of (14-¢*'), with these
variables serving as selectors to determine the appropriate linear segment based on the value of z;. It is worth noting that
the final five constraints are indicator constraints, which can be linearized using the big-M method as described in |Griva
et al. (2009). Consequently, the problem can be formulated as a mixed-integer multi-linear optimization problem. The
mixed-integer multi-linear problem can be further converted to a mixed-integer linear problem (MILP) using the approach
describe next.

B FORMULATING LOGICAL AND BETWEEN BINARY VARIABLES AS LINEAR
CONSTRAINTS

Consider an optimization problem involving three binary variables X;, Xo, and X3, where 1, x5, and z3 denote their
respective assignments. We define an objective function that incorporates products of these binary variables as follows -

max 1T — LT3+ T1X3 (22)
T1,T2,T3

Although constraints are not incorporated in this instance, the same methodology can be extended to constrained optimiza-
tion problems. Subsequently, auxiliary variables z;, z2, and 23 are introduced to account for each of the binary products.
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The optimization problem can be stated as follows:

max 21 — 29 + 23
T1,T2,T3

st. 1 Nz = 21, (23)
T2 A\ I3 = 29,

xr1 N\ x3 = 23.

The optimization problem may be expressed by incorporating additional linear constraints to represent each boolean prod-
uct. The resulting problem is presented as follows:

max 21— 29 + 23
T1,T2,T3

St 1420 —1< 29,
z1 < 1y,
z1 < &g,
T2+ w3 — 1 < 29, 24)
z2 < T2,
22 < w3,
z1+x3—1< 25,
z3 < 11,

23 < x3.

The problem formulation outlined in Section [A, and more specifically, equation equation includes expressions of the
form x;x;. These terms serve to represent the logical AND operation between binary variables x; and x;, and are a
direct result of the product x; x g;. Consequently, this optimization problem is classified as a mixed-integer multi-linear
optimization problem.

The formulation detailed in this section enables the capture of these logical AND operations between binary variables
through linear constraints, thereby enabling the utilization of Mixed-Integer Linear Programming (MILP) solvers, e.g.,
Gurobi Optimization, LLC| (2023), to find the optimal solution (or an anytime, near optimal solution if a time bound is
specified).

C GIBBS SAMPLING FOR DDNS

Algorithm 1 Gibbs Sampling for DDNs

Input: video segment/image v, number of samples N, DDN (N, D)

Output: An estimate of the marginal probability distribution over each label X; of the DDN given v
1: e + N(v)

2: Randomly initialize X = x(©)

3: for j =1to N do

4 7 < Generate random permutation of [1, n]

5: for i =1tondo

6.

7

8

9

(4) (49) (3-1)
‘T7r](i) ~ Pri)(%r(i) IX'n'j(l):vr(ifl)’ X7r](i+1):7r(n)’ e)

: for: =1tondo Ny .
Pi(ailv) = % S0, PalwilxY) e)
. return { P;(z;|v)]i € {1,...,n}}

This section describes the Gibbs Sampling inference procedure for DDNs (see Algorithm [I). Gibbs Sampling serves as
an approximation method for the Most Probable Explanation (MPE) inference task in DDNs by offering max-marginals,
which can subsequently be utilized to approximate MPE. The inputs to the algorithm are (1) a video segment/image v, (2)
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the number of samples N and (3) trained DDN model (N, D). The algorithm begins (see step 1) by extracting features
e from the video segment/image v by sending the latter through the neural network A (which represents the function
N). Then in steps 2-8, it generates N samples via Gibbs sampling. The Gibbs sampling procedure begins with a random
assignment to all the labels (step 2). Then at each iteration (steps 3—-8), it first generates a random permutation 7 over the
n labels and samples the labels one by one along the order 7 (steps 5-7). To sample a label indexed by 7 (%) at iteration

J» we compute Py (2x(; )\x7r Ve (i—1) Sjli)l) (n)’ e) from the DN D where x ()1) r(i—1) and xfrj(lj)l) n) denote the
assignments to all labels order before Tr(;) atiteration j and the assignments to all labels ordered after z(;) at iteration

j — 1 respectively.

After N samples are generated via Gibbs sampling, the algorithm uses them to estimate (see steps 9—11) the (posterior)
marginal probability distribution at each label X; given v using the mixture estimator (Liul2008)). The algorithm terminates
(see step 12) by returning these posterior estimates.

D PRECISION BASED EVALUATION METRICS

In Tables and we present a comprehensive account of precision-focused metrics, specifically Mean Average
Precision (mAP) and Label Ranking Average Precision (LRAP). It should be noted that these metrics are not directly
applicable to the Most Probable Explanation (MPE) task, as they necessitate scores (probabilities) of the output labels.
However, given that SlowFast, InceptionV3, Q2L, MSRN, and DDN-GS can provide such probabilities, their precision
scores are anticipated to be elevated. We employed Gibbs Sampling to approximate the MPE, enabling the derivation of
marginal probabilities to approximate max-marginals and, thereby, the MPE.

In majority of the instances, the Gibbs Sampling-based inference on DDNs yields performance metrics closely aligned with
baseline methods. Variability exists, with some metrics exceeding the baseline in the context of MLAC and falling short
in the case of MLIC. Notably, the Integer Linear Programming (ILP)-based approach for DDN outperforms all alternative
methods across three datasets when evaluated on LRAP. DRF-based methods and DDN-specific inference techniques gen-
erally underperform on these precision metrics. Again, this outcome is anticipated, given that apart from Gibbs Sampling,
none of the other techniques can generate probabilistic scores for labels, leading to their inferior performance.

Table ST4: Comparison of our methods with the feature extractor for MLAC - Precision-based metrics. The best/second
best values are bold/underlined.

Method Charades TACoS Wetlab
mAP LRAP mAP LRAP mAP LRAP
SlowFast (Fan et al., 2020) 0.39 0.53
InceptionV3 (Szegedy et al.,[2016) 0.70 0.81 0.79 0.82
DRF - GS 0.27 0.44 0.56 0.79 0.54 0.76
DRF - ILP 0.19 0.28 0.40 0.67 0.63 0.73
DRF - [JGP 031 044 0.56 0.81 0.79 0.85
DDN - GS 0.40 0.55 0.75 0.84 0.84 0.87
DDN - RW 0.19 0.28 049 0.66 0.63 0.77
DDN - Greedy 032 0.30 0.50 0.69 0.65 0.78
DDN - ILP 0.36 0.53 0.51 0.85 0.65 0.87

E ANNOTATIONS COMPARISON BETWEEN Q2L AND DDN-MLP-JOINT ON THE
MS-COCO DATASET

Table [ST6|presents a qualitative evaluation of the label predictions produced by our DDN-ILP inference scheme compared
to the baseline Q2L using randomly selected images from the MS-COCO dataset. This analysis provides a perspective
on the advantages of DDN-ILP over Q2L, particularly in terms of correcting errors generated by the feature extractor. In
the initial set of seven rows, DDN-ILP adds additional correct labels to the Q2L output. For certain images, the objects
overlooked by Q2L are inherently challenging to identify. In these instances, the DDN-ILP method, which infers labels
based on label relationships, effectively rectifies the limitations of Q2L. DDN-ILP refines Q2L’s predictions in the fol-
lowing seven instances by removing incorrect predictions and aligning precisely with the ground truth labels. Finally, we
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Table ST5: Comparison of our methods with the feature extractor for MLIC for Precision based metrics. The best/second
best values are bold/underlined.

Method MS-COCO  NUS-WIDE  PASCAL-VOC
mAP LRAP mAP LRAP mAP LRAP
Q2L (Liu etal[2021) 091  0.96

MSRN (Qu et al., 2021) 062 085 096 098
DRF - GS 075 086 040 074 077 093

DRE - ILP 074 082 025 059 081  0.88

DRE - JGP 074 090 041 075 083 094
DDN - GS 0.84 093 050 0.82 092 096

DDN - RW 074 082 024 061 091 094

DDN - Greedy 074 083 035 068 093 095
DDN - ILP 085 083 048 082 097 098

examine cases where DDN-ILP’s modifications result in inaccuracies (rows have grey background), contrasting with Q2L’s
correct predictions. These results demonstrate the effectiveness of DDN-ILP in improving the predicted labels relative to
the baseline.

Table ST6: Comparison of labels predicted by Q2L and our DDN-ILP scheme on the MS-COCO dataset.
Labels inside [] represent the difference between the predictions of the two methods, assuming that a threshold of 0.5 is
used (i.e., every label whose probability > 0.5 is considered a predicted label). Due to the MPE focus in DDN-ILP, only
label configurations are generated, omitting corresponding probabilities.

Ground Truth Q2L DDN

person, car, truck, | person (1.00), car | person, car, truck,
traffic light, skate- | (1.00), skateboard | traffic light, skate-
board (1.00), [truck (0.33), | board

traffic light (0.41)]

knife, spoon, mi- | microwave (1.00), | knife, spoon, mi-
crowave, oven, | oven (1.00), sink | crowave, oven, sink,
sink, refrigerator (1.00),  refrigerator | refrigerator

(1.00), knife (0.98),
[spoon (0.38)]
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person, skis, snow-
board

person (1.00), skis
(1.00), [smowboard
(0.20)]

person, skis, snow-
board

person, truck, suit-
case

truck (1.00), suit-
case (0.98), [person
0.249)]

person, truck, suit-
case

car, bus, truck, cat,
dog

car (0.99), truck
(0.99), cat (0.96),
[bus (0.37), dog
(0.15)]

car, bus, truck, cat,
dog

fork, sandwich, hot
dog, dining table

fork (1.00), hot dog
(1.00), dining table
(0.90), [sandwich
(0.28)]

fork, sandwich, hot
dog, dining table
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person, bottle, wine
glass, chair, dining
table

person (1.00), bot-
tle (1.00), wine glass
(1.00), dining table
(0.99), [chair (0.25)]

person, bottle, wine
glass, chair, dining ta-
ble

person, sports ball,
baseball glove,

person (1.00), base-
ball glove (1.00),
[sports ball (0.27)]

person, sports ball,
baseball glove,

person, teddy bear

person (1.00), teddy

bear (1.00), [hand-
bag (0.58), clock
(0.96)]

person, teddy bear

person, cup, chair,
dining table, cell
phone,

person (1.00), cup
(1.00), chair (1.00),
dining table (1.00),
cell phone (1.00),
[clock (0.92), potted
plant (0.85)]

person, cup, chair,
dining table, cell
phone,
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cup, banana, apple

cup (1.00), banana
(1.00), apple (1.00),
[spoon (0.90), fork
(0.55)]

cup, banana, apple

light (0.90), car
(0.56), , truck (0.51)]

cup, banana banana (1.00), [bottle | cup, banana
(0.90), oven (0.66)],
cup (0.54)

train train (1.00), [traffic | train
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person, bowl, oven

person (1.00), oven
(1.00) , bowl (0.99),
[chair (0.85), spoon
(0.59)]

person, bowl, oven

person, cup, spoon,
cake, dining table

cup (1.00), spoon
(1.00), cake (1.00),
dining table (0.95),
person (0.91), [donut

person, cup, spoon,
cake, dining table

0.73)

(0.89), fork (0.65)]
bird, skateboard, | bird (1.00), skate- | bird, skateboard,
couch board (1.00), couch | [couch]
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glass, fork, bowl,
dining table, sand-
wich

tle (1.00), wine glass
(1.00), fork (1.00),
bowl (1.00), dining
table (0.99), sandwich
(0.52)

person, bench, suit- | person (1.00), suit- | person, suitcase,
case case (1.00), bench | [bench]

(0.57)
bed, clock bed (1.00), clock | bed, [clock]

(0.51)
bicycle, car, cat, | bicycle (1.00), car | bicycle, car, cat, [bot-
bottle (1.00), cat (1.00), | tle]

bottle (0.77)
person, bottle, wine | person (1.00), bot- | person, bottle, wine

glass, fork, bowl, din-
ing table, [sandwich]




