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Abstract

We propose a self-supervised learning approach
for solving the following constrained optimization
task in log-linear models or Markov networks. Let
f and g be two log-linear models defined over the
sets X and Y of random variables respectively.
Given an assignment x to all variables in X (evi-
dence) and a real number q, the constrained most-
probable explanation (CMPE) task seeks to find
an assignment y to all variables in Y such that
f(x,y) is maximized and g(x,y) → q. In our
proposed self-supervised approach, given assign-
ments x to X (data), we train a deep neural net-
work that learns to output near-optimal solutions
to the CMPE problem without requiring access to
any pre-computed solutions. The key idea in our
approach is to use first principles and approximate
inference methods for CMPE to derive novel loss
functions that seek to push infeasible solutions
towards feasible ones and feasible solutions to-
wards optimal ones. We analyze the properties of
our proposed method and experimentally demon-
strate its efficacy on several benchmark problems.

1 INTRODUCTION

Probabilistic graphical models (PGMs) such as Bayesian
and Markov networks (Koller and Friedman, 2009; Dar-
wiche, 2009) compactly represent joint probability distribu-
tions over random variables by factorizing the distribution
according to a graph structure that encodes conditional in-
dependence among the variables. Once learned from data,
these models can be used to answer various queries, such
as computing the marginal probability distribution over a
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subset of variables (MAR) and finding the most likely as-
signment to all unobserved variables, which is referred to as
the most probable explanation (MPE) task.

Recently, Rouhani et al. (2020) proposed an extension to
the MPE task in PGMs by introducing constraints. More
specifically, given two PGMs f and g defined over the set
of random variables X and a real number q, the constrained
most probable explanation (CMPE) task seeks to find the
most likely state X = x w.r.t. f such that the constraint
g(x) → q is satisfied. Even though both MPE and CMPE
are NP-hard in general, CMPE is considerably more difficult
to solve in practice than MPE. Notably, CMPE is NP-hard
even on PGMs having no edges, such as zero treewidth or
independent PGMs, while MPE can be solved in linear time.
Rouhani et al. (2020) and later Rahman et al. (2021) showed
that several probabilistic inference queries are special cases
of CMPE. This includes queries such as finding the decision
preserving most probable explanation (Choi et al., 2012),
finding the nearest assignment (Rouhani et al., 2018) and
robust estimation (Darwiche and Hirth, 2023, 2020).

Our interest in the CMPE task is motivated by its exten-
sive applicability to various neuro-symbolic inference tasks.
Many of these tasks can be viewed as specific instances of
CMPE. Specifically, when f(x) represents a function en-
coded by a neural network and g(x) → q signifies particular
symbolic or weighted constraints that the neural network
must adhere to, the neuro-symbolic inference task involves
determining the most likely prediction with respect to f
while ensuring that the constraint g(x) → q is satisfied.
Another notable application of CMPE involves transfer-
ring abstract knowledge and inferences from simulations
to real-world contexts. For example, in robotics, numer-
ous simulations can be employed to instruct the robot on
various aspects, such as object interactions, robot-world
interactions, and underlying physical principles, encapsulat-
ing this abstract knowledge within the constraint g(x) → q.
Subsequently, with a neural network f trained on a limited
amount of real-world data, characterized by richer feature
sets and objectives, g can be used to reinforce the predic-
tions made by f , ensuring that the robot identifies the most
likely prediction with respect to f while satisfying the con-
straint g(x) → q. This strategy enhances the reliability of



Learning to Solve the Constrained Most Probable Explanation Task in Probabilistic Graphical Models

the robot’s predictions and underscores the practical signifi-
cance of CMPE.

In this paper, we explore novel machine learning (ML) ap-
proaches for solving the CMPE task, drawing inspiration
from recent developments in learning to optimize (Donti
et al., 2021; Fioretto et al., 2020; Park and Van Hentenryck,
2022; Zamzam and Baker, 2019). The main idea in these
works is to train a deep neural network that takes the pa-
rameters, observations, etc. of a constrained optimization
problem as input and outputs a near-optimal solution to the
optimization problem.

In practice, a popular approach for solving optimization
problems is to use search-based solvers such as Gurobi and
SCIP. However, a drawback of these off-the-shelf solvers
is their inability to efficiently solve large problems, espe-
cially those with dense global constraints, such as the CMPE
problem. In contrast, neural networks are efficient because
once trained, the time complexity of solving an optimization
problem using them scales linearly with the network’s size.
This attractive property has also driven their application in
solving probabilistic inference tasks such as MAR and MPE
inference (Gilmer et al., 2017; Kuck et al., 2020; Zhang
et al., 2020; Satorras and Welling, 2021). However, all of
these works require access to exact inference techniques
in order to train the neural network. As a result, they are
feasible only for small graphical models on which exact in-
ference is tractable. Recently, Cui et al. (2022) proposed to
solve the MPE task by training a variational distribution that
is parameterized by a neural network in a self-supervised
manner (without requiring access to exact inference meth-
ods). To the best of our knowledge, there is no prior work
on using neural networks for solving the CMPE problem.

In this paper, we propose a new self-supervised approach
for training neural networks which takes observations or
evidence as input and outputs a near optimal solution to the
CMPE task. Existing self-supervised approaches (Fioretto
et al., 2020; Park and Van Hentenryck, 2022) in the learning

to optimize literature either relax the constrained objective
function using Lagrangian relaxation and then use the Lan-
gragian dual as a loss function or use the Augmented La-
grangian method. We show that these methods can be easily
adapted to solve the CMPE task. Unfortunately, an issue
with them is that an optimal solution to the Lagrangian dual
is not guaranteed to be an optimal solution to the CMPE task
(because of the non-convexity of CMPE, there is a duality
gap). To address this issue, we propose a new loss function
based on first principles and show that an optimal solution
to the loss function is also an optimal solution to the CMPE
task. Moreover, our new loss function has several desirable
properties, which include: (a) during training, when the con-
straint is violated, it focuses on decreasing the strength of
the violation, and (b) when constraints are not violated, it
focuses on increasing the value of the objective function
associated with the CMPE task.

We conducted a comprehensive empirical evaluation, com-
paring several supervised and self-supervised approaches to
our proposed method. To the best of our knowledge, these
are the first empirical results on using machine learning,
either supervised or self-supervised, to solve the CMPE task
in PGMs. On a number of benchmark models, our experi-
ments show that neural networks trained using our proposed
loss function are more efficient and accurate compared to
models trained to minimize competing supervised and self-
supervised loss functions from the literature.

2 Notation and Background

We denote random variables by upper-case letters (e.g., X ,
Y , Z, etc.), their corresponding assignments by lower-case
letters (e.g., x, y, z, etc.), sets of random variables by bold
upper-case letters (e.g., X, Y, Z, etc.) and assignments
to them by bold lower-case letters (e.g., x, y, z, etc.). zX
denotes the projection of the complete assignment z on to
the subset X of Z. For simplicity of exposition, we assume
that discrete and continuous random variables take values
from the set {0,1} and [0,1] respectively.

We use the multilinear polynomial representation (Sherali
and Adams, 2009; Sherali and Tuncbilek, 1992; Horst and
Tuy, 1996) to concisely describe our proposed method as
well as for specifying discrete, continuous, and mixed con-
strained optimization problems. Let Z = {Z1, . . . , Zn} be
a set of random variables. Let [n] = {1, . . . , n} and i ↑ [n]
be an index over the variables of Z. Let 2[n] denote the set
of subsets of indices of [n]; thus each element of 2[n] de-
notes a (unique) subset of Z. Let I ↓ 2[n] and let wI ↑ R
where I ↑ I be a real number (weight) associated with each
element I of I. Then, a multilinear polynomial is given by

f(z) = f(z1, . . . , zn) =
∑

I↑I
wI

∏

i↑I

zi (1)

where z = (z1, . . . , zn) is an assignment to all variables in
Z. We will call f(z) the weight of z.

It is known that weighting functions, namely the sum of log
of conditional probability tables and log-potentials associ-
ated with Bayesian and Markov networks respectively can
be expressed as multilinear polynomials (see for example
(Koller and Friedman, 2009)).

Example 1. Figure 1 shows a multilinear representation

for a Markov network. The weight of the assignment (X1 =
0, X2 = 1, Y1 = 0, Y2 = 1) is 14 and 18 w.r.t. M1 and

M2 respectively.

2.1 Constrained Most Probable Explanation

We are interested in solving the following constrained most
probable explanation (CMPE) task. Let X and Y be two
subsets of Z such that Z = X ↔ Y and X ↗ Y = ↘. We
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Figure 1: Two Markov networks M1 and M2 having the
same chain-like structure and defined over the same set
{X1, X2, Y1, Y2} of variables . M1 is defined by the set
of log-potentials {h1, h2, h3} and M2 is defined by the
set of log-potentials {t1, t2, t3}. Each log-potential can be
expressed as a local multilinear polynomial function. The
global multilinear function representing M1 and M2 are
h(x1, x2, y1, y2) = 18≃ 3x1 + x2 ≃ 7y1 ≃ y2 + 5x1y1 ≃
4x2y2 ≃ y1y2 and t(x1, x2, y1, y2) = 28 + 2x1 ≃ 7x2 ≃
4y1 ≃ 2y2 + 2x1y1 ≃ x2y2 respectively which are obtained
by adding the local functions associated with the respec-
tive models and then simplifying, i.e., h(x1, x2, y1, y2) =
h1(x1, y1) + h2(y1, y2) + h3(x2, y2). t(x1, x2, y1, y2) is
obtained similarly.

will refer to Y as decision variables and X as evidence vari-

ables. Given assignments x and y, let (x,y) denote their
composition. Let h and t denote two multilinear polynomi-
als over Z obtained from two Markov networks M1 and
M2 respectively that represent two (possibly different) joint
probability distributions over Z. Then given a real number q
and an assignment x to all variables in X, the CMPE task is
to find an assignment y→ to all the variables in Y such that
h(x,y→) is maximized (namely the probability of the assign-
ment w.r.t. M1 is maximized) and t(x,y→) → q (namely
the probability of the assignment w.r.t. M2 is bounded by a
constant). Formally,

maximize
y

h(x,y) s.t. t(x,y) → q (2)

For brevity, we will abuse notation and use hx(y) and tx(y)
to denote h(x,y) and t(x,y) respectively. The most proba-
ble explanation (MPE) task in probabilistic graphical mod-
els (Koller and Friedman, 2009) is a special case of CMPE;
MPE is just CMPE without the constraint tx(y) → q. The
goal in MPE is to find an assignment y→ to Y such that the
weight hx(y→) of the assignment is maximized given evi-
dence x. Similar to MPE, CMPE is NP-hard in general, with
the caveat that CMPE is much harder than MPE. Specif-
ically, CMPE is NP-hard even on independent graphical
models (having zero treewidth), where MPE can be solved

in linear time by independently maximizing each univariate
function (Rouhani et al., 2020).
Example 2. Given X1 = 1, X2 = 1 and q = 20, the CMPE

solution of the example problem in figure 1 is (y→1 , y
→
2) =

(0, 1) with a value h(1, 1, 0, 1) = 11, whereas the MPE

solution is (y→1 , y
→
2) = (0, 0) with value h(1, 1, 0, 0) = 16.

Since we are interested in machine learning approaches to
solve the CMPE task and such approaches employ loss
functions, it is convenient to express CMPE as a mini-
mization task with a "→ 0" constraint. This can be accom-
plished by negating h and subtracting q from t. Formally,
let fx(y) = ≃hx(y) and gx(y) = tx(y)≃ q. Then Eq. (2)
is equivalent to the following minimization problem:

minimize
y

fx(y) s.t. gx(y) → 0 (3)

Let y→ be the optimal solution to the problem given in Eq.
(3) and let p→x = fx(y→). Also, without loss of generality,
we assume that fx is strictly positive, i.e., ⇐y, fx(y) > 0.

If all variables in Y are binary (or discrete in general),
Eq. (3) can be formulated as an (equivalent) integer linear
programming (ILP) problem by introducing auxiliary inte-
ger variables for each multilinear term (e.g., y1,2 = y1y2,
y2,3 = y2y3, etc.) and adding appropriate constraints to
model the equivalence between the auxiliary variables and
multilinear terms (see for example (Koller and Friedman,
2009), Chapter 13). Therefore, in practice, (3) can be solved
optimally using mixed integer linear programming (MILP)
solvers such as Gurobi (Gurobi Optimization, 2021) and
SCIP (Achterberg et al., 2008; Achterberg, 2009).

Unfortunately, due to a presence of a dense global constraint,
namely gx(y) → 0 in Eq. (3), the MILP solvers often per-
form poorly. Instead, in practice, application designers often
use efficient, specialized algorithms that exploit problem
structure for lower bounding p→x, and then using these lower
bounds in an anytime branch-and-bound algorithm to obtain
an upper bound on p→x.

2.2 Specialized Lower Bounding Algorithms

Recently, Rahman et al. (2021) proposed two new ap-
proaches for computing upper bounds on the optimal value
of the maximization problem given in Eq. (2). These meth-
ods can be easily adapted to obtain a lower bound on p→x;
because an upper bound on the maximization problem is a
lower bound on the corresponding minimization problem.
We present the adaptations of Rahman et al.’s approach next.

The first approach is based on the Lagrangian relaxation
method that introduces a Lagrange multiplier µ ⇒ 0 to
transform the constrained minimization problem to the fol-
lowing unconstrained problem: minimizeyfx(y) + µgx(y).
Let d→µ denote the optimal value of the unconstrained prob-
lem. Then, it is easy to show that d→µ → p→x. The largest upper
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bound is obtained by finding a value of µ that maximizes
d→µ. More formally,

max
µ↓0

d→µ = max
µ↓0

min
y

fx(y) + µgx(y) → p→x (4)

Rahman et al. (2021) proposed to solve the inner minimiza-
tion problem using exact techniques from the graphical mod-
els literature such as variable/bucket elimination (Dechter,
1999), branch and bound search and best-first search (Mari-
nescu and Dechter, 2012, 2009; Wu et al., 2020). When ex-
act inference is not feasible, Rahman et al. (2021) proposed
to solve the inner problem using approximate inference tech-
niques such as mini-bucket elimination, dual-decomposition
and join-graph based bounding algorithms (Choi and Dar-
wiche, 2011; Dechter and Rish, 2003; Wainwright et al.,
2005; Globerson and Jaakkola, 2007; Komodakis et al.,
2007; Ihler et al., 2012). The outer maximization problem
is solved using sub-gradient ascent.

The second approach by Rahman et al. (2021) uses the
Lagrangian decomposition method to transform the problem
into a multi-choice knapsack problem (MCKP) and then
utilizes off-the-shelf MCKP solvers. In our experiments, we
use the Lagrange relaxation approach given in Eq. (4).

If the set Y contains continuous variables, then it is not pos-
sible to reduce it to an equivalent MILP/LP (Horst and Tuy,
1996; Sherali and Tuncbilek, 1992). However, by leveraging
linearization methods (Sherali and Tuncbilek, 1992; Sherali
and Adams, 2009) and solving the resulting problem using
linear programming (LP) solvers, we can still obtain good
lower bounds on p→x.

3 Solving CMPE using Methods from the
Learning to Optimize Literature

In this section, we show how techniques developed in the
learning to optimize literature (Donti et al., 2021; Fioretto
et al., 2020; Park and Van Hentenryck, 2022; Zamzam and
Baker, 2019) which seeks to develop machine learning ap-
proaches for solving constrained optimization problems can
be leveraged to solve the CMPE task. The main idea is to
train a deep neural network F! : X ⇑ Y parameterized by
the set ! ↑ RM such that at test time given evidence x, the
network is able to predict an (near) optimal solution ŷ to the
CMPE problem. Note that as far as we are aware, no prior
work exists on solving CMPE using deep neural networks.

3.1 Supervised Methods

In order to train the parameters of F! in a supervised man-
ner, we need to acquire labeled data in the form D =
{⇓xi,yi⇔}Ni=1 where each label yi is an optimal solution
to the problem given in Eq. (3) given xi. In practice, we
can generate the assignments {xi}Ni=1 by sampling them
from the graphical model corresponding to f and the labels

{yi}Ni=1 by solving the minimization problem given in Eq.
(3) using off-the-shelf solvers such as Gurobi and SCIP.

Let ŷi = F!(xi) denote the labels predicted by the neural
network for xi. Following Zamzam and Baker (2019), we
propose to train F! using the following two loss functions

Mean-Squared Error (MSE) :
1

N

∑

i

(yi ≃ ŷi)
2 (5)

Mean-Absolute-Error (MAE):
1

N

∑

i

|yi ≃ ŷi| (6)

Experimentally (see the supplementary material), we found
that neural networks trained using the MAE and MSE loss
functions often output infeasible assignments. To address
this issue, following prior work (Nellikkath and Chatzi-
vasileiadis, 2021), we propose to add ωx max{0, gx(ŷ)} to
the loss function where ωx is a penalty coefficient.

In prior work (Fioretto et al., 2020), it was observed that
the quality of the solutions greatly depends on the value
chosen for ωx. Moreover, it is not straightforward to choose
it optimally because it varies for each x. To circumvent
this issue, we propose to update ωx via a Lagrangian dual

method (Nocedal and Wright, 2006). More specifically, we
propose to use the following subgradient method to optimize
the value of ωx. While training a neural network, let ωk

xi

and ŷk
i denote the values of the penalty co-efficient and

the predicted assignment respectively at the k-th epoch and
for the i-th example in D (if the i-th example is part of the
current mini-batch), then, we update ωk+1

xi
using

ωk+1
xi

= ωk
xi

+ εmax{0, gxi(ŷ
k
i )} (7)

where ε is the Lagrangian step size. In our experiments, we
evaluated both the naive and the penalty based supervised
loss approaches (for CMPE) and found that the penalty
method with MSE loss yields the best results. Therefore, in
our experiments, we use it as a strong supervised baseline.

3.2 Self-Supervised Methods

Supervised methods require pre-computed solutions for nu-
merous NP-hard/multilinear problem instances, which are
computationally expensive to derive. Therefore, we propose
to train the neural network in a self-supervised manner that
does not depend on the pre-computed results. Utilizing find-
ings from Kotary et al. (2021) and Park and Van Hentenryck
(2022), we introduce two self-supervised approaches: one is
grounded in the penalty method, and the other builds upon
the augmented Lagrangian method.

Penalty Method (Donti et al., 2021; Kotary et al., 2021;
Fioretto et al., 2020). In the penalty method, we solve the
constrained minimization problem by iteratively transform-
ing it into a sequence of unconstrained problems. Each un-
constrained problem at iteration k is constructed by adding
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a term, which consists of a penalty parameter ωk
x multiplied

by a function max{0, gx(y)}2 that quantifies the constraint
violations, to the objective function. Formally, the optimiza-
tion problem at the k-th step is given by:

min
y

fx(y) +
ωk

x
2

max {0, gx(y)}2 (8)

Here, ωk
x is progressively increased either until the constraint

is satisfied or a predefined maximum ωmax is reached. ωk
x

can be updated after a few epochs using simple strategies
such as multiplication by a fixed factor (e.g., 2, 10, etc.).

The penalty method can be adapted to learn a neural network
in a self-supervised manner as follows. At each epoch k,
we sample an assignment x (or multiple samples for a mini-
batch) from the graphical model corresponding to f , predict
ŷ using the neural network and then use the following loss
function to update its parameters:

Lpen
x (ŷ) = fx(ŷ) +

ωk
x
2

max {0, gx(ŷ)}2 (9)

Determining the optimal ωk
x is crucial. In prior work, Kotary

et al. (2021) and Fioretto et al. (2020) proposed to update it
via a subgradient method, similar to the update rule given
by Eq. (7). More formally, we can update ωk

x using:

ωk+1
x = ωk

x + εmax
{
0, gx(ŷ

k)
}

(10)

where ε is the Lagrangian step size.

Augmented Lagrangian Method (ALM). In this method,
we augment the objective used in the penalty method with a
Lagrangian term. More formally, the optimization problem
at the k-th step is given by (compare with Eq. (8)):

min
y

fx(y) +
ωk

x
2

max {0, gx(y)}2 + µk
xgx(y) (11)

Here, ωk
x may be progressively increased similar to the

penalty method while µk
x is updated using

µk+1
x = max

{
0, µk

x + ωk
xgx(y

k)
}

(12)

Recently, Park and Van Hentenryck (2022) proposed a self-
supervised primal-dual learning method that leverages two
distinct networks to emulate the functionality of ALM: the
first (primal) network takes as input x and outputs y while
the second network focuses on learning the dual aspects;
specifically it takes x as input and outputs µk

x . The training
process uses a sequential approach, where one network is
trained while the other remains frozen to furnish the requi-
site values for the loss computation.

The primal network uses the following loss function:

LA,p
x (ŷ|µ,ω) = fx(ŷ) +

ω

2
max {0, gx(ŷ)}2 + µgx(y)

While the dual network uses the following loss function

LA,d
x (µ̂|y,ω, µk) = ||µ̂≃max

{
0, µk + ωgx(y)

}
||

where µ̂ is the predicted value of the Lagrangian multiplier.

3.2.1 Drawbacks of the Penalty and ALM Methods

A limitation of the penalty-based self-supervised method is
that it does not guarantee a global minimum unless spe-
cific conditions are met. In particular, the optimal solu-
tion w.r.t. the loss function (see Eq. (9)) may be far away
from the optimal solution y→ of the problem given in Eq.
(3), unless the penalty co-efficient ωk

x ⇑ ↖. Moreover,
when ωk

x is large for all x, the gradients will be uninfor-
mative. In the case of ALM method (cf. (Nocedal and
Wright, 2006)), for global minimization, we require that
either ωk

x ⇑ ↖ or ⇐x with gx(y) > 0, µk
x should be

such that miny fx(y)+µk
xgx(y) > p→x. Additionally, ALM

introduces a dual network, increasing the computational
complexity and potentially leading to negative information
transfer when the dual network’s outputs are inaccurate.
These outputs are subsequently utilized in the loss to train
the primal network for the following iteration, thereby ex-
erting a negative effect. To address these limitations, next,
we introduce a self-supervised method that achieves global
minimization without the need for a dual network or infinite
penalty coefficients.

4 A NOVEL SELF-SUPERVISED CMPE
SOLVER

An appropriately designed loss function should have the
following characteristics. For feasible solutions, namely
when gx(y) → 0, the loss function should be proportional
to fx(y). While for infeasible assignments, it should equal
infinity. This loss function will ensure that once a feasible
solution is found, the neural network will only explore the
space of feasible solutions. Unfortunately, infinity does not
provide any gradient information, and the neural network
will get stuck in the infeasible region if the neural network
generates an infeasible assignment during training.

An alternative approach is to use g as a loss function when
the constraint is not satisfied (i.e., gx(y) > 0) in order to
push the infeasible solutions towards feasible ones (Liu and
Cherian, 2023). Unfortunately, this approach will often yield
feasible solutions that lie at the boundary gx(y) = 0. For
instance, for a boundary assignment yb where gx(yb) =
0 but fx(yb) > 0 (or decreasing), the sub-gradient will
be zero, and the neural network will treat the boundary
assignment as an optimal one.

To circumvent this issue, we propose a loss function which
has the following two properties: (1) It is proportional to
g in the infeasible region with f acting as a control in the
boundary region (when g is zero); and (2) It is proportional
to f in the feasible region. Formally,

Lx(ŷ) =

{
fx(ŷ) if gx(ŷ) → 0

ϑx(fx(ŷ) + gx(ŷ)) if gx(ŷ) > 0
(13)

where ϑx is a function of the evidence x. Our goal is to find
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a bound for ϑx such that the following desirable property is
satisfied and the bound can be computed in polynomial time
for each x by leveraging bounding methods for CMPE.

Property (Consistent Loss): The loss for all infeasible
assignments is higher than the optimal value p→x.
To satisfy this property, we have to ensure that:

⇐ŷ s.t. gx(ŷ) > 0, ϑx (fx(ŷ) + gx(ŷ)) > p→x

which implies that the following condition holds.

ϑx

(
min
ŷ

fx(ŷ) + gx(ŷ) s.t. gx(ŷ) > 0

)
> p→x

Let q→x denote the optimal value of minŷ fx(ŷ) +

gx(ŷ) s.t. gx(ŷ) > 0. Then, ϑx > p→
x

q→x
.

Proposition 4.1. If Lx(ŷ) is consistent, i.e., ϑx > p→
x

q→x
then

minŷ Lx(ŷ) = p→x, namely Lx(ŷ) is an optimal loss func-

tion.

Proof. From equation (13), we have

min
ŷ

Lx(ŷ) = min

{
min
ŷ

fx(ŷ) s.t. gx(ŷ) → 0,

ϑx

(
min
ŷ

fx(ŷ) + gx(ŷ) s.t. gx(ŷ) > 0

)}

= min {p→x,ϑxq
→
x} (14)

Because Lx(ŷ) is consistent, namely, ϑx > p→
x

q→x
, we have

min {p→x,ϑxq
→
x} = p→x (15)

From equations (14) and (15), the proof follows.

We assume that fx(y) and gx(y) are bounded functions,
namely for any assignment (x,y), lf → fx(y) → uf

and lg → gx(y) → ug where ≃↖ < s < ↖ and
s ↑ {lf , uf , lg, ug}. Also, for simplicity, we assume that
fx(y) is a strictly positive function, namely lf > 0.

Thus, based on the assumptions given above, we have

p→x
q→x

→ uf

lf
and 0 < ϑx → uf

lf

The above assumptions will ensure that the gradients are
bounded, because ϑx, f and g are bounded, and both p→x
and q→x are greater than zero.

Next, we show how to compute an upper bound on ϑx

using ϑx > p→
x

q→x
, thus ensuring that we have an optimal loss

function. The terms in the numerator (p→x) and denominator
(q→x) require solving two instances of the CMPE task. Since
solving CMPE exactly is impractical and moreover, since
we are interested in self-supervised methods where we do

not assume access to such a solver, we propose to lower
bound q→x and upper bound p→x.

For a given instance x, a lower bound on q→x can be ob-
tained using the Lagrangian relaxation method described
in section 2.2 (see Eq. (4)) for discrete variables and the
Reformulation-Linearization method described in Sherali
and Tuncbilek (1992) for continuous variables. On the other
hand, any feasible solution can serve as an upper bound
for p→x. A simple yet efficient approach is to begin with
a loose upper bound by upper bounding the MPE task:
maxy fx(y), using fast algorithms such as mini-bucket
elimination (Dechter and Rish, 2003) or fast linear program-
ming based approximations (Ihler et al., 2012; Globerson
and Jaakkola, 2007) and then keep track of feasible solutions
during batch-style gradient descent.

In summary, we proposed a new loss function which uses
the quantity ϑx. When the neural network predicts a feasible
ŷ, the loss equals f , whereas when it predicts an infeasible
ŷ, the loss is such that the infeasible solution can quickly be
pushed towards a feasible solution (because it uses gradients
from g). A key advantage of our proposed loss function is
that ϑx is not treated as an optimization variable, and a
bound on it can be pre-computed for each example x.

4.1 Making The Loss Function Smooth and
Continuous

The loss function defined in Eq. (13) is continuous and
differential everywhere except at gx(ŷ) = 0. There is a jump

discontinuity at gx(ŷ) = 0 since limgx(ŷ)↔0↑ fx(ŷ) ↙=
limgx(ŷ)↔0+ ϑx(fx(ŷ) + gx(ŷ)). To address this issue, we
propose the following continuous approximation

L̃x(ŷ) =
(
(1≃ ϖ(ϱgx(ŷ))) · [fx(ŷ)]

)
+ (16)

(
ϖ(ϱgx(ŷ)) · [ϑx(fx(ŷ) + max{0, gx(ŷ)})]

)

where ϖ(.) is the sigmoid function and ϱ ⇒ 0 is a hyper-
parameter that controls the steepness of the sigmoid. At
a high level, the above continuous approximation uses a
sigmoid function to approximate a Heaviside step function.

5 EXPERIMENTAL EVALUATION

In this section, we thoroughly evaluate the effectiveness of
our proposed neural networks based solvers for CMPE. We
evaluate the competing methods on several test problems
using three criteria: optimality gap (relative difference be-
tween the optimal solution and the one found by the method),
constraint violations (percentage of time the method outputs
an infeasible solution), and training and inference times.
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(a) Grids
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(b) Segmentation
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(c) Tractable Models

Figure 2: Optimality Gap (avg %) and Average Violations for Self-Supervised methods

Table 1: Average gap and constraint violations over test samples for models from the UAI competition. ± denotes standard
deviation. Bold values indicate the methods with the highest performance. Underlined values denote significant violations,
particularly those exceeding a threshold of 0.15. For these methods, the gap values are not considered in our analysis.

Methods Segment12 Segment14 Segment15 Grids17 Grids18
ILP Obj. 463.454 471.205 514.287 2879.469 4160.196

Gap 0.053 ± 0.043 0.053 ± 0.043 0.053 ± 0.041 0.092 ± 0.070 0.082 ± 0.065
SLpen Violations 0.238 ± 0.426 0.248 ± 0.432 0.153 ± 0.361 0.054 ± 0.226 0.053 ± 0.224

Gap 0.051 ± 0.042 0.065 ± 0.048 0.056 ± 0.044 0.089 ± 0.055 0.104 ± 0.062
SSLpen Violations 0.149 ± 0.357 0.127 ± 0.332 0.086 ± 0.281 0.004 ± 0.059 0.005 ± 0.071

Gap 0.063 ± 0.050 0.055 ± 0.042 0.063 ± 0.049 0.102 ± 0.059 0.092 ± 0.061
PDL Violations 0.073 ± 0.261 0.120 ± 0.326 0.016 ± 0.126 0.000 ± 0.000 0.001 ± 0.022

Gap 0.055 ± 0.045 0.051 ± 0.040 0.068 ± 0.051 0.067 ± 0.049 0.069 ± 0.051
SS-CMPE Violations 0.093 ± 0.291 0.107 ± 0.415 0.002 ± 0.039 0.001 ± 0.032 0.001 ± 0.022

5.1 The Loss Functions: Competing Methods

We trained several neural networks to minimize both su-
pervised and self-supervised loss functions. We evaluated
both MSE and MAE supervised losses with and without
penalty coefficients (see section 3). In the main paper, we
show results on the best performing supervised loss, which
is MSE with penalty, denoted by SLpen (results for other
supervised loss functions are provided in the supplement).

For self-supervised loss, we experimented with the follow-
ing three approaches: (1) penalty-based method, (2) ALM,
which uses a primal-dual loss (PDL), and the approach de-
scribed in section 4. We will refer to these three schemes
as SSLpen, PDL, and SS-CMPE, respectively. We used the
experimental setup described by Park and Van Hentenryck
(2022) for tuning the hyperparameters of PDL and SSLpen.
For the SS-CMPE method, we employed a grid search ap-
proach to determine the optimal values for ϱ. The range of
values considered for ϱ was {0.1, 1.0, 2.0, 5.0, 10.0, 20.0}.

Note that all methods used the same neural network archi-
tecture (described in the supplement) except PDL, which
uses two neural networks. We obtained the ground-truth for
the supervised training by solving the original ILP problem
using SCIP (Achterberg, 2009) and Gurobi (Gurobi Opti-
mization, 2021). We report the objective values of the ILP

solutions in each table (see Tables 1, 2, and 3).

5.2 Datasets and Benchmarks

We evaluate the competing algorithms (SLpen, SSLpen,
PDL, and SS-CMPE) on a number of log-linear Markov net-
works ranging from simple models (low treewidth) to high
treewidth models. The simple models comprise of learned
tractable probabilistic circuits (Choi et al., 2020) without
latent variables, specifically, cutset networks (Rahman et al.,
2014) from benchmark datasets used in the literature. The
complex, high treewidth models are sourced from past UAI
inference competitions (Elidan and Globerson, 2010). Fi-
nally, we evaluated all methods on the task of generating
adversarial examples for neural network classifiers.

5.3 High Tree-Width Markov Networks and Tractable
Probabilistic Circuits

Our initial series of experiments focus on high treewidth
Grids and Image Segmentation Markov networks from the
UAI inference competitions (Gogate, 2014, 2016). In this
investigation, we generated CMPE problems by utilizing the
model employed in the UAI competitions, denoted as M1.
Subsequently, M2 was created by adjusting the parameters
of M1 while incorporating a noise parameter ς drawn from
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Table 2: Average gap and constraint violations over test samples from tractable probabilistic models. ± denotes standard
deviation. Bold values indicate the methods with the highest performance. Underlined values denote significant violations,
particularly those exceeding a threshold of 0.15. For these methods, the gap values are not considered in our analysis.

Methods AD BBC DNA 20 NewsGroup WebKB1
ILP Obj. 2519.128 871.567 221.119 921.702 824.493

SLpen
Gap 0.156 ± 0.057 0.036 ± 0.027 0.143 ± 0.113 0.041 ± 0.031 0.044 ± 0.035

Violations 0.135 ± 0.341 0.237 ± 0.425 0.151 ± 0.358 0.084 ± 0.277 0.070 ± 0.254

SSLpen
Gap 0.159 ± 0.055 0.045 ± 0.033 0.142 ± 0.116 0.045 ± 0.036 0.058 ± 0.043

Violations 0.008 ± 0.089 0.056 ± 0.230 0.014 ± 0.118 0.005 ± 0.071 0.025 ± 0.158

PDL
Gap 0.154 ± 0.055 0.051 ± 0.036 0.144 ± 0.117 0.046 ± 0.035 0.059 ± 0.043

Violations 0.000 ± 0.000 0.025 ± 0.156 0.006 ± 0.077 0.004 ± 0.059 0.012 ± 0.109

SS-CMPE
Gap 0.134 ± 0.054 0.043 ± 0.033 0.138 ± 0.112 0.045 ± 0.035 0.057 ± 0.043

Violations 0.006 ± 0.077 0.056 ± 0.230 0.007 ± 0.083 0.005 ± 0.071 0.016 ± 0.126

a normal distribution with mean 0 and variance ϖ2 = 0.1.
To select q, we randomly generated 100 samples, sorted
them based on their weight, and then selected the weight
of the 10th, 30th, 60th, 80th, and 90th sample as a value
for q. We assess the impact of changing the value of q
in the supplement. Experiments in the main body of the
paper use q equal to the weight of the 80th random sample.
For each network, we randomly chose 60% of variables as
evidence (X) and the remaining as query variables (Y). For
both the UAI models and tractable probabilistic circuits, we
generated 10K samples from M1, and used 9K for training
and 1K for testing. We used 5-fold cross validation for
selecting the hyperparameters.

The results for the UAI datasets are shown in Table 1. We
see that for the majority of the datasets, our method pro-
duces solutions with superior gap values compared to the
other methods. Even in situations where our methods do
not achieve better gap values, they exhibit fewer violations.
This demonstrates the effectiveness and robustness of our
methods in generating solutions that strike a balance be-
tween optimizing the objective function and maintaining
constraint adherence. For certain datasets, our methods ex-
hibit significantly lower constraint violations, even up to 10
times less than supervised methods.

In the next phase of our study, we employed MPE (Most
Probable Explanation) tractable models, which were learned
on five high-dimensional datasets (see Lowd and Davis
(2010) for details in the datasets): DNA, NewsGroup
(c20ng), WebKB1 (cwebkb), AD, and BBC. These learned
models served as M1. We then applied Gaussian noise as
described earlier to generate M2 based on M1. A similar
trend can be observed for tractable probabilistic models in
Table 2, where our method consistently outperforms the
other self-supervised methods across all datasets. Not only
does our approach exhibit superior performance in terms of
gap values, but it also demonstrates comparable constraint
violations. When comparing with the supervised method,
our proposed algorithm exhibits significantly fewer con-

straint violations while maintaining a better or comparable
gap value. This emphasizes the strength of our method in
effectively balancing the optimization objectives and con-
straint adherence, thereby offering improved overall perfor-
mance compared to both the self-supervised and supervised
approaches in the context of tractable probabilistic mod-
els. In Figure 2, we present the average optimality gap and
average violations for different dataset groups. It is impor-
tant to note that results closer to the origin indicate better
performance.

5.4 Adversarial Modification on the MNIST Dataset

Table 3: Performance comparison of supervised and self-
supervised methods. The table presents the average objec-
tive value, gap, and constraint violations over the test ex-
amples, along with the training and inference time required
for each method for adversarial example generation. Bold
values signify the methods that achieved the best scores.

Methods Obj. Value Gap Violation Time in seconds
Train Inf.

ILP 30.794 0.000 0.000 NA 5.730
SLpen 63.670 1.069 0.071 57534.4 0.003
SSLpen 76.316 1.480 0.052 469.540 0.003
PDL 66.400 1.158 0.055 839.025 0.003
SS-CMPE 62.400 1.028 0.021 520.149 0.003

We also evaluated our approach on the task of adversarial
example generation for discriminative classifiers, specifi-
cally neural networks. Adversarial examples play a crucial
role in assessing the robustness of models and facilitating
the training of more resilient models. The task of Adver-
sarial Example Generation involves producing new images
by making minimal modifications to input images that are
mis-classified by the model. Rahman et al. (2021) showed
that this problem can be reduced to CMPE. Formally, let G
be a differentiable, continuous function defined over a set
of inputs X . Given an assignment X = x, we introduce the
decision variable D, which takes the value d when G > 0
and d̄ otherwise. In the context of adversarial attacks, given
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ILP MSE MSEpen MAE MAEpen SSLpen PDL SS-CMPE

Figure 3: Qualitative results on the adversarially generated MNIST digits. Each row represents an original image followed
by a corresponding image generated adversarially by 8 different methods: ILP, MSE, SL+Penalty, MAE, MAE+Penalty,
SSLpen, PDL, and SS-CMPE .

an image x, our objective is to generate a new image x↗ such
that the distance between x and x↗ is minimized and the
decision is flipped (namely G < 0). We used a log-linear
model F to represent the sum absolute distance between
the pixels. Then the task of adversarial example genera-
tion can be formulated as the following CMPE problem:
maximize

∑
f↑F f (x↗|x) s.t. G (x↗|x) → 0.

We evaluated the algorithms using the MNIST handwrit-
ten digit dataset (LeCun and Cortes, 2010). We trained a
multi-layered neural network having >95% test accuracy
and used it as our G function. To generate adversarial ex-
amples corresponding to a given test example, we trained
an autoencoder A : X ≃⇑ X ↗ using four loss functions
corresponding to SLpen, SSLpen, PDL and SS-CMPE. We
used the default train-test split (10K examples for testing
and 60K for training).

Table 3 shows quantitative results comparing our proposed
SS-CMPE method with other competing methods. We can
clearly see that SS-CMPE is superior to competing self-
supervised (SSLpen and PDL) and supervised methods
(SLpen) in terms of both constraint violations and optimality
gap. The second best method in terms of optimality gap is
SLpen. However, its constraint violations are much higher,
and its training time is significantly larger because it needs
access to labeled data, which in turn requires using com-
putationally expensive ILP solvers. The training time of
SS-CMPE is much smaller than PDL (because the latter
uses two networks) and is only slightly larger than SSLpen.

Figure 3 shows qualitative results on adversarial modifi-
cation to the MNIST digits {1, 2, 6, 7, 8} by all the eight
methods. The CMPE task minimally changes an input im-
age such that the corresponding class is flipped according to
a discriminative classifier. MSE and our proposed method
SS-CMPE are very competitive and were able to generate vi-
sually indistinguishable, high-quality modifications whereas
the other methods struggled to do so.

Summary: Our experiments show that SS-CMPE consis-
tently outperforms competing self-supervised methods, PDL
and SSLpen, in terms of optimality gap and is comparable
to PDL in terms of constraint violations. The training time
of SS-CMPE is smaller than PDL (by half as much) and is
slightly larger than SSLpen. However, it is considerably bet-
ter than SSLpen in terms of constraint violations. SS-CMPE
also employs fewer hyperparameters as compared to PDL.

6 CONCLUSION AND FUTURE WORK

In this paper, we proposed a new self-supervised learning
algorithm for solving the constrained most probable explana-
tion task which at a high level is the task of optimizing a mul-
tilinear polynomial subject to a multilinear constraint. Our
main contribution is a new loss function for self-supervised
learning which is derived from first principles, has the same
set of global optima as the CMPE task, and operates exclu-
sively on the primal variables. It also uses only one hyper-
parameter in the continuous case and two hyperparameters
in the discrete case. Experimentally, we evaluated our new
self-supervised method with penalty-based and Lagrangian
duality-based methods proposed in literature and found that
our method is often superior in terms of optimality gap and
training time (also requires less hyperparameter tuning) to
the Lagrangian duality-based methods and also superior
in terms of optimality gap and the number of constraint
violations to the penalty-based methods.

Our proposed method has several limitations and we will ad-
dress them in future work. First, it requires a bound for ϑx.
This bound is easy to obtain for graphical models/multilinear
objectives but may not be straightforward to obtain for ar-
bitrary non-convex functions. Second, the ideal objective
in the infeasible region should be proportional to gx(y) but
our method uses ϑx(fx(y) + gx(y)).
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A DERIVING UPPER BOUNDS FOR p→x AND LOWER BOUNDS FOR q→x

To compute the value of ϑx, we utilize the following equation:

ϑx >
p→x
q→x

(17)

We choose to set a lower bound for the denominator q→x and an upper bound for the numerator p→x due to the computational
challenges of finding exact solutions for the CMPE task.

To estimate an upper bound for the optimal value (p→x) of the constrained optimization problem

min
ŷ

fx(ŷ) s.t. gx(ŷ) → 0, (18)

we begin by seeking a loose upper bound through solving the unconstrained task maxy fx(ŷ) by utilizing mini-bucket
elimination (Dechter and Rish, 2003). Subsequently, feasible solutions are tracked during batch-style gradient descent to
refine the initial upper bound (note that the weight of any feasible solution is an upper bound on p→x). For each iteration, the
feasible solution with the optimal objective value for each example is stored and subsequently utilized.

To derive a lower bound for q→x, which represents the optimal solution for the following constrained optimization problem,

min
ŷ

fx(ŷ) + gx(ŷ) s.t. gx(ŷ) > 0, (19)

we can employ the methodologies delineated in Rahman et al. (2021). These techniques provide a mechanism for either
upper bounding or lower bounding the CMPE task, contingent on whether it is formulated as a maximization or minimization
problem, respectively.

To establish a lower bound for q→x, the constrained optimization task is initially transformed into an unconstrained formulation
via Lagrange Relaxation. This results in the following optimization problem:

max
µ↓0

min
ŷ

fx(ŷ) + (1≃ µ)∝ gx(ŷ) (20)

Here, µ denotes the Lagrangian multiplier. By addressing this dual optimization problem, we enhance the precision of
the lower bound for q→x. For the inner minimization task, the mini-bucket elimination method is employed. The outer
maximization is solved through the utilization of sub-gradient descent.

B EXTENSIONS

Adding a Penalty for Constraint Violations. A penalty of the form max{0, gx(ŷ)}2 can be easily added to the loss
function as described by the following equation

Lx(ŷ) =

{
fx(ŷ) if gx(ŷ) → 0

ϑx(fx(ŷ) + gx(ŷ)) + εmax{0, gx(ŷ)}2 if gx(ŷ) > 0

where ε ⇒ 0 is a hyperparameter.

C EXPERIMENTAL SETUP AND DETAILS

C.A Dataset and Model Description

Table ST4 provides a comprehensive overview of the characteristics of each binary dataset, including the number of variables
and functions present in each dataset. These datasets were specifically chosen to provide diverse and representative examples
for evaluating the performance and scalability of our algorithms.
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We used the following two classes of Markov networks from the UAI competitions (Elidan and Globerson, 2010; Gogate,
2014, 2016): Ising models (Grids) and Image Segmentation networks. Specifically, we used the Grids_17 and Grids_18
networks and Segmentation_12, Segmentation_14 and Segmentation_15 networks.

We learned MPE tractable cutset networks without latent variables using the scheme of Rahman et al. (2014) on five
high-dimensional datasets: DNA (Van Haaren and Davis, 2012; Ucla-Starai, 2023), NewsGroup (c20ng) (Lowd and Davis,
2010; Ucla-Starai, 2023), WebKB1 (cwebkb) (Lowd and Davis, 2010; Ucla-Starai, 2023), AD (Van Haaren and Davis,
2012; Ucla-Starai, 2023), and BBC (Van Haaren and Davis, 2012; Ucla-Starai, 2023). These datasets are widely used in the
probabilistic circuits literature (Lowd and Davis, 2010). Note that CMPE is intractable on these models even though MPE is
tractable.

Table ST4: Dataset and Model Descriptions

Dataset Number of Variables Number of Functions
Tractable Probabilistic Circuits

AD 1556 1556
BBC 1058 1058

20NewsGroup 910 910
WebKB 839 839

DNA 180 180
High Tree-Width Markov Networks

Grids17 400 1160
Grids18 400 1160

Segmentation12 229 851
Segmentation14 226 845
Segmentation15 232 863

C.B Data Generation

Recall that the CMPE problem uses two Markov networks M1 and M2, and a value of q. We used the original Markov
networks (chosen from the UAI competitions or learned from data) as M1 and generated M2 by adding a value v, which was
randomly sampled from a normal distribution with mean 0 and variance 0.1, to each entry in each potential in M1. We used
the following strategy to generate q. We generated 100 random samples from M2, sorted them according to their weight
w.r.t. M2, and then chose the 10th, 30th, 60th, and 90th sample as a value for q. At a high level, as we go from the 10th
sample to the 90th sample, namely as q increases, the constraint (weight w.r.t. M2 is less than or equal to q) becomes less
restrictive. In other words, as we increase q, the set of feasible solutions increases (or stays the same). For each value of q,
we use 60% of the variables as evidence variables X and the remaining as Y.

For each CMPE problem, we generated 10000 samples, used the first 9000 samples for training and the remaining 1000
samples for testing. For the supervised methods, we generated the optimal assignment to Y using an integer linear
programming solver called SCIP (Achterberg, 2009).

For our proposed scheme, which we call SS-CMPE, we used approach described in Section A to find the upper bound of p→x
and the lower bound of q→x
Note that CMPE is a much harder task than MPE. Our scheme can be easily adapted to MPE, all we have to do is use f to
yield a supervised scheme.

C.C Architecture Design and Training Procedure

In our experimental evaluations, we employed a Multi-Layer Perceptron (MLP) with a Rectified Linear Unit (ReLU)
activation function for all hidden layers. The final layer of the MLP utilized a sigmoid activation function, as it was necessary
to obtain outputs within the range of [0, 1] for all our experiments. Each fully connected neural network in our study
consisted of three hidden layers with respective sizes of [128, 256, and 512]. We maintained this consistent architecture
across all our supervised (Zamzam and Baker, 2019; Nellikkath and Chatzivasileiadis, 2021) and self-supervised (Park
and Van Hentenryck, 2022; Donti et al., 2021) methods. It is important to highlight that in the adversarial modification
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experiments, the neural network possessed an equal number of inputs and outputs, specifically set to 28∝ 28 (size of an
image in MNIST). However, in the remaining two experiments concerning probabilistic graphical models, the input size was
the number of evidence variables (|X|), while the output size was |Y|.

For PDL (Park and Van Hentenryck, 2022), the dual network had one hidden layer with 128 nodes. The number of outputs
of the dual network corresponds to the number of constraints in the optimization problem. It is worth emphasizing that
our method is not constrained to the usage of Multi-Layer Perceptrons (MLPs) exclusively, and we have the flexibility to
explore various neural network architectures. This flexibility allows us to consider and utilize alternative architectures that
may better suit the requirements and objectives of other optimization tasks.

Regarding the training process, all methods underwent 300 epochs using the Adam optimizer (Kingma and Ba, 2014) with a
learning rate of 1e↘3. We employed a Learning Rate Scheduler to dynamically adapt the learning rate as the loss reaches a
plateau. The training and testing processes for all models were conducted on a single NVIDIA A40 GPU.

C.D Hyper-parameters

The number of instances in the minibatch was set to 128 for all the experiments. We decay the learning rate in all the
experiments by 0.9 when the loss becomes a plateau. Given the empirical observations that learning rate decay often leads to
early convergence in most cases and does not yield beneficial results for the supervised baselines, we have made the decision
not to apply learning rate decay to these methods. This choice is based on the understanding that the baselines perform
optimally without this particular form of learning rate adjustment. For detailed information regarding the hyper-parameters
utilized in the benchmarking methods, we refer readers to the corresponding papers associated with each method. As stated
in the main text, the optimal hyperparameters were determined using a grid search approach. For the SS-CMPE method, for
each dataset, the hyperparameters were selected from the following available options -

• ϱ - {0.1, 1.0, 2.0, 5.0, 10.0, 20.0}

• ε - {0.01, 0.1, 1, 10, 100}

In the optimization problem of SS-CMPE, the parameter ε is employed to penalize the violation of constraints. The
methodology for this approach, denoted as SS-CMPE pen, is explained in detail in Section B. The corresponding experiments
are presented in tables ST8 through ST17.

C.E The Loss Function: Competing Methods

We evaluated eight different loss functions, including our method to train a deep neural network to solve our CMPE tasks.
The loss functions used for supervised training are 1) Mean-Squared-Error (MSE), and 2) Mean-Absolute-Error (MAE).
Both of these losses were then extended to incorporate penalty terms as suggested by (Nellikkath and Chatzivasileiadis,
2021). We denote them as SL+Penalty and MAE+Penalty. We evaluated the self-supervised loss proposed by (Donti et al.,
2021) (SSLpen) and by (Park and Van Hentenryck, 2022) (PDL). Finally, we extend our self-supervised CMPE loss function
to incorporate the penalty term max{0, gx(ŷ)}2 (see section B). We denote it as SS-CMPE pen.

D EXAMINING THE INFLUENCE OF q: EVALUATING THE PERFORMANCE OF OUR
PROPOSED METHOD FOR CHALLENGING PROBLEM INSTANCES

To determine the value of q, a total of 100 random samples were generated, and their weights were calculated. Subsequently,
the samples were sorted based on their weight in ascending order. The weight values corresponding to the 10th, 30th, 60th,
and 90th samples were then chosen as the values for q. For each value of q, we compare the average gap and violations
obtained by our method (SS-CMPE and SS-CMPE pen) against six other supervised and self-supervised methods. Tables
ST8 through ST17 show the scores obtained by each of the eight methods along with their standard deviations on the
generated test problems. This study investigates the performance of each method in finding near-optimal feasible solutions
for difficult problems which is directly controlled by the percentile rank of q; problems with a q value in the 10th and 30th
percentile are considered harder problems to solve as the size of the feasible region is considerably smaller than the size of
the infeasible region. As a result all methods have higher violations on these problems than the problems with a q value in
the 60th and 90th percentile.
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Table ST5 presents a summary of the performances of SS-CMPE and other supervised methods based on their average gap
and the average number of violations on the test data for different values of q. We compute the minimum gap and violations
achieved among the four supervised methods MSE, SL+Penalty, MAE, and MAE+Penalty and label them as the best
supervised method. We choose the minimum gap and violations among SS-CMPE and SS-CMPE pen and label them
under the unified term best SS-CMPE. We observe that best SS-CMPE consistently has significantly lower violations
than the best supervised method in all the problem instances, and its gap is often comparable to the gap achieved by the best
supervised method, winning when compared to the average gap.

Table ST6 presents a similar summary of the performances of SS-CMPE and other self-supervised methods. We compute
the minimum gap and violations achieved among the 2 self-supervised methods SSLpen and PDL and label them as the
best SSL method. As before, we choose the minimum gap and violations among SS-CMPE and SS-CMPE pen and label
them under the unified term best SS-CMPE. Although self-supervised methods have larger gaps compared to supervised
methods but lesser violations, we observe that SS-CMPE continues to consistently achieve significantly lower violations
than the best performing self-supervised method in all the problem instances, and its gap is often comparable to the gap
achieved by the best supervised method, winning when compared to the average gap.

Finally, in table ST7, we present a quick summary of the performances of our best SS-CMPE method vs all other methods.
We choose the minimum gap and violations achieved among the 6 other supervised and self-supervised methods and the
minimum gap and violations among SS-CMPE and SS-CMPE pen. In all problems and q values, the best SS-CMPE has
significantly lower violations compared to other methods while having a very competitive gap.

D.A The Feasible-Only Optimality Gaps: Comparing Self-Supervised Approaches

From the results presented in tables ST5 through ST17, we observe that self-supervised approaches produce more feasible
solutions compared to supervised approaches. In this section, we present the results of a controlled study that shows how
each of the self-supervised approaches perform in terms of finding optimal solutions in the feasible region.

We selected a subset of problems from the test set on which all self-supervised methods, namely, SSLpen (Donti et al.,
2021), PDL (Park and Van Hentenryck, 2022) and our method SS-CMPE and SS-CMPE pen, obtained feasible solutions
and this was done for each possible value of q. We then computed their gaps and compare them via figure SF4. Among the
three methods analyzed, SS-CMPE and SS-CMPE pen consistently exhibits superior performance across the majority of
cases. Its optimality gaps are significantly smaller compared to the other two methods. This finding suggests that SS-CMPE
is more effective in minimizing the objective value and achieving solutions closer to optimality for the given examples.
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Table ST5: Summary: best SS-CMPE vs other supervised methods including MSE, SL+Penalty, MAE, and
MAE+Penalty. Bold represents the minimum gap, while underlined means the least violations

q 10 30 60 90
Models
/Dataset

Gap /
Violations

best
SS-CMPE

best
supervised

best
SS-CMPE

best
supervised

best
SS-CMPE

best
supervised

best
SS-CMPE

best
supervised

Segment-12 gap 0.057 0.054 0.051 0.052 0.053 0.051 0.050 0.051
violations 0.152 0.511 0.166 0.500 0.084 0.348 0.021 0.131

Segment-14 gap 0.050 0.049 0.047 0.049 0.048 0.048 0.051 0.051
violations 0.134 0.691 0.088 0.616 0.066 0.410 0.046 0.207

Segment-15 gap 0.051 0.051 0.050 0.051 0.052 0.051 0.051 0.052
violations 0.060 0.570 0.060 0.417 0.049 0.248 0.001 0.061

Grids-17 gap 0.072 0.054 0.069 0.057 0.066 0.067 0.063 0.058
violations 0.035 0.304 0.013 0.125 0.002 0.044 0.001 0.002

Grids-18 gap 0.064 0.056 0.067 0.060 0.060 0.065 0.065 0.064
violations 0.017 0.210 0.019 0.087 0.000 0.025 0.000 0.015

DNA gap 0.138 0.135 0.138 0.136 0.137 0.136 0.139 0.137
violations 0.013 0.434 0.002 0.448 0.001 0.281 0.001 0.089

20NewsGr. gap 0.043 0.044 0.045 0.046 0.044 0.046 0.044 0.044
violations 0.069 0.455 0.054 0.176 0.007 0.046 0.001 0.001

WebKB gap 0.059 0.054 0.058 0.054 0.056 0.054 0.053 0.054
violations 0.074 0.471 0.029 0.378 0.001 0.174 0.001 0.018

BBC gap 0.038 0.036 0.043 0.036 0.042 0.037 0.040 0.037
violations 0.074 0.657 0.067 0.557 0.056 0.384 0.002 0.151

Ad gap 0.129 0.204 0.131 0.201 0.130 0.204 0.131 0.213
violations 0.017 0.085 0.004 0.041 0.000 0.021 0.000 0.005

Average gap 0.070 0.074 0.070 0.074 0.069 0.076 0.069 0.076
violations 0.065 0.439 0.050 0.335 0.027 0.198 0.007 0.068
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Table ST6: Summary: best SS-CMPE vs other self-supervised methods including SLpen, and PDL. Bold repre-
sents the minimum gap, while underlined means the least violations

q 10 30 60 90
Models/
Dataset

Gap/
Violations

best
SS-CMPE

best
SSL

best
SS-CMPE

best
SSL

best
SS-CMPE

best
SSL

best
SS-CMPE

best
SSL

Segment-12 gap 0.057 0.054 0.051 0.052 0.053 0.051 0.050 0.051
violations 0.152 0.545 0.166 0.622 0.084 0.486 0.021 0.163

Segment-14 gap 0.050 0.058 0.047 0.050 0.048 0.050 0.051 0.053
violations 0.134 0.507 0.088 0.414 0.066 0.394 0.046 0.207

Segment-15 gap 0.051 0.051 0.050 0.053 0.052 0.051 0.051 0.054
violations 0.060 0.676 0.060 0.360 0.049 0.274 0.001 0.086

Grids-17 gap 0.072 0.086 0.069 0.079 0.066 0.093 0.063 0.087
violations 0.035 0.043 0.013 0.003 0.002 0.001 0.001 0.014

Grids-18 gap 0.064 0.105 0.067 0.074 0.060 0.093 0.065 0.118
violations 0.017 0.060 0.019 0.001 0.000 0.003 0.000 0.005

DNA gap 0.138 0.140 0.138 0.141 0.137 0.139 0.139 0.143
violations 0.013 0.048 0.002 0.062 0.001 0.003 0.001 0.004

20NewsGr gap 0.043 0.043 0.045 0.046 0.044 0.045 0.044 0.046
violations 0.069 0.278 0.054 0.129 0.007 0.024 0.001 0.001

WebKB gap 0.059 0.058 0.058 0.057 0.056 0.057 0.053 0.057
violations 0.074 0.149 0.029 0.096 0.001 0.056 0.001 0.013

BBC gap 0.038 0.041 0.043 0.042 0.042 0.038 0.040 0.039
violations 0.074 0.336 0.067 0.160 0.056 0.149 0.002 0.029

Ad gap 0.129 0.135 0.131 0.140 0.130 0.142 0.131 0.134
violations 0.017 0.055 0.004 0.006 0.000 0.013 0.000 0.004

Average gap 0.070 0.077 0.070 0.073 0.069 0.076 0.069 0.078
violations 0.065 0.270 0.050 0.185 0.027 0.140 0.007 0.053
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Table ST7: Summary: best SS-CMPE has significantly lower violations compared to other methods on all the problems
and over all the chosen q values. It has comparable gap to the other methods.

q 10 30 60 90
Models

/Datasets
Gap

/Violations
best

SS-CMPE
others best

SS-CMPE
others best

SS-CMPE
others best

SS-CMPE
others

Segment-12 Gap 0.057 0.054 0.051 0.052 0.053 0.051 0.050 0.051
Violations 0.152 0.511 0.166 0.500 0.084 0.348 0.021 0.131

Segment-14 Gap 0.050 0.049 0.047 0.049 0.048 0.048 0.051 0.051
Violations 0.134 0.507 0.088 0.414 0.066 0.394 0.046 0.207

Segment-15 Gap 0.051 0.051 0.050 0.051 0.052 0.051 0.051 0.052
Violations 0.060 0.570 0.060 0.360 0.049 0.248 0.001 0.061

Grids-17 Gap 0.072 0.054 0.069 0.057 0.066 0.067 0.063 0.058
Violations 0.035 0.043 0.013 0.003 0.002 0.001 0.001 0.002

Grids-18 Gap 0.064 0.056 0.067 0.060 0.060 0.065 0.065 0.064
Violations 0.017 0.060 0.019 0.001 0.000 0.003 0.000 0.005

DNA Gap 0.138 0.135 0.138 0.136 0.137 0.136 0.139 0.137
Violations 0.013 0.048 0.002 0.062 0.001 0.003 0.001 0.004

20NewsGr Gap 0.043 0.043 0.045 0.046 0.044 0.045 0.044 0.044
Violations 0.069 0.278 0.054 0.129 0.007 0.024 0.001 0.001

WebKB Gap 0.059 0.054 0.058 0.054 0.056 0.054 0.053 0.054
Violations 0.074 0.149 0.029 0.096 0.001 0.056 0.001 0.013

BBC Gap 0.038 0.036 0.043 0.036 0.042 0.037 0.040 0.037
Violations 0.074 0.336 0.067 0.160 0.056 0.149 0.002 0.029

Ad Gap 0.129 0.135 0.131 0.140 0.130 0.142 0.131 0.134
Violations 0.017 0.055 0.004 0.006 0.000 0.013 0.000 0.004

Average Gap 0.070 0.067 0.070 0.068 0.069 0.070 0.069 0.068
Violations 0.065 0.256 0.050 0.173 0.027 0.124 0.007 0.046
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Figure SF4: Illustration of the optimality gap for self-supervised methods (on feasible examples only) for all approaches.
Lower is better.
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Table ST8: Average gap and constraint violations over test samples for models applied to the Segmentation12 Dataset for
different q values. The plot displays the mean values of the average gap and constraint violations, with standard deviations
denoted by ±

q 10 30 60 90
ILP Obj 491.150 476.654 467.913 461.967

MAE Gap 0.064 ± 0.051 0.061 ± 0.049 0.053 ± 0.042 0.052 ± 0.040
Violations 0.569 ± 0.495 0.545 ± 0.498 0.430 ± 0.495 0.131 ± 0.337

MSE Gap 0.054 ± 0.042 0.053 ± 0.042 0.051 ± 0.041 0.051 ± 0.041
Violations 0.776 ± 0.417 0.580 ± 0.494 0.486 ± 0.500 0.186 ± 0.390

MAE+Penalty Gap 0.064 ± 0.050 0.061 ± 0.049 0.059 ± 0.046 0.052 ± 0.043
Violations 0.511 ± 0.500 0.500 ± 0.500 0.348 ± 0.476 0.140 ± 0.347

SL+Penalty Gap 0.054 ± 0.042 0.052 ± 0.041 0.051 ± 0.040 0.051 ± 0.042
Violations 0.651 ± 0.477 0.505 ± 0.500 0.486 ± 0.500 0.186 ± 0.390

SSLpen
Gap 0.054 ± 0.043 0.052 ± 0.040 0.051 ± 0.041 0.051 ± 0.040

Violations 0.790 ± 0.407 0.622 ± 0.485 0.486 ± 0.500 0.186 ± 0.390

PDL
Gap 0.063 ± 0.050 0.052 ± 0.041 0.052 ± 0.041 0.051 ± 0.041

Violations 0.545 ± 0.498 0.622 ± 0.485 0.517 ± 0.500 0.163 ± 0.369

SS-CMPE
Gap 0.057 ± 0.044 0.051 ± 0.040 0.053 ± 0.043 0.050 ± 0.041

Violations 0.503 ± 0.293 0.346 ± 0.485 0.257 ± 0.437 0.104 ± 0.305

SS-CMPE pen
Gap 0.058 ± 0.043 0.052 ± 0.040 0.053 ± 0.043 0.051 ± 0.041

Violations 0.152 ± 0.359 0.166 ± 0.372 0.084 ± 0.277 0.021 ± 0.143

Table ST9: Average gap and constraint violations over test samples for models applied to the Segmentation14 Dataset for
different q values. The plot displays the mean values of the average gap and constraint violations, with standard deviations
denoted by ±.

q 10 30 60 90
ILP Obj 493.647 482.837 476.145 470.485

MAE Gap 0.067 ± 0.051 0.062 ± 0.048 0.062 ± 0.047 0.051 ± 0.040
Violations 0.691 ± 0.462 0.623 ± 0.485 0.435 ± 0.496 0.271 ± 0.444

MSE Gap 0.051 ± 0.039 0.049 ± 0.038 0.048 ± 0.037 0.053 ± 0.041
Violations 0.810 ± 0.392 0.818 ± 0.386 0.606 ± 0.489 0.252 ± 0.434

MAE+Penalty Gap 0.065 ± 0.051 0.061 ± 0.048 0.060 ± 0.046 0.054 ± 0.043
Violations 0.693 ± 0.461 0.616 ± 0.487 0.410 ± 0.492 0.207 ± 0.405

SL+Penalty Gap 0.049 ± 0.039 0.049 ± 0.039 0.049 ± 0.037 0.054 ± 0.041
Violations 0.810 ± 0.392 0.803 ± 0.397 0.601 ± 0.490 0.215 ± 0.411

SSLpen
Gap 0.061 ± 0.047 0.050 ± 0.038 0.050 ± 0.039 0.053 ± 0.042

Violations 0.590 ± 0.492 0.618 ± 0.486 0.394 ± 0.489 0.207 ± 0.405

PDL
Gap 0.058 ± 0.045 0.068 ± 0.051 0.056 ± 0.043 0.054 ± 0.043

Violations 0.507 ± 0.500 0.414 ± 0.493 0.403 ± 0.491 0.207 ± 0.405

SS-CMPE
Gap 0.050 ± 0.038 0.047 ± 0.037 0.048 ± 0.037 0.051 ± 0.040

Violations 0.502 ± 0.295 0.444 ± 0.401 0.309 ± 0.497 0.150 ± 0.358

SS-CMPE pen
Gap 0.050 ± 0.039 0.048 ± 0.038 0.050 ± 0.037 0.052 ± 0.042

Violations 0.134 ± 0.340 0.088 ± 0.284 0.066 ± 0.248 0.046 ± 0.211
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Table ST10: Average gap and constraint violations over test samples for models applied to the Segmentation15 Dataset for
different q values. The plot displays the mean values of the average gap and constraint violations, with standard deviations
denoted by ±.

q 10 30 60 90
ILP Obj 531.436 520.647 516.797 514.276

MAE Gap 0.053 ± 0.043 0.054 ± 0.043 0.053 ± 0.042 0.052 ± 0.041
Violations 0.570 ± 0.495 0.417 ± 0.493 0.248 ± 0.432 0.061 ± 0.239

MSE Gap 0.051 ± 0.038 0.052 ± 0.041 0.052 ± 0.040 0.053 ± 0.041
Violations 0.833 ± 0.373 0.715 ± 0.452 0.450 ± 0.498 0.076 ± 0.265

MAE+Penalty Gap 0.056 ± 0.043 0.054 ± 0.042 0.053 ± 0.041 0.053 ± 0.042
Violations 0.616 ± 0.486 0.457 ± 0.498 0.265 ± 0.441 0.075 ± 0.263

SL+Penalty Gap 0.052 ± 0.040 0.051 ± 0.040 0.051 ± 0.040 0.052 ± 0.041
Violations 0.833 ± 0.373 0.715 ± 0.452 0.450 ± 0.498 0.076 ± 0.265

SSLpen
Gap 0.053 ± 0.042 0.059 ± 0.047 0.052 ± 0.041 0.054 ± 0.043

Violations 0.676 ± 0.468 0.360 ± 0.480 0.274 ± 0.446 0.097 ± 0.295

PDL
Gap 0.051 ± 0.040 0.053 ± 0.043 0.051 ± 0.040 0.054 ± 0.043

Violations 0.698 ± 0.459 0.461 ± 0.499 0.392 ± 0.488 0.086 ± 0.280

SS-CMPE
Gap 0.051 ± 0.040 0.050 ± 0.041 0.052 ± 0.040 0.051 ± 0.040

Violations 0.366 ± 0.474 0.298 ± 0.499 0.225 ± 0.417 0.059 ± 0.236

SS-CMPE pen
Gap 0.052 ± 0.040 0.052 ± 0.042 0.052 ± 0.041 0.051 ± 0.041

Violations 0.060 ± 0.238 0.060 ± 0.238 0.049 ± 0.215 0.001 ± 0.032

Table ST11: Average gap and constraint violations over test samples for models applied to the Grids17 Dataset for different
q values. The plot displays the mean values of the average gap and constraint violations, with standard deviations denoted by
±.

q 10 30 60 90
ILP Obj 2892.585191 2884.506703 2877.311872 2878.147272

MAE Gap 0.119 ± 0.078 0.133 ± 0.088 0.125 ± 0.084 0.114 ± 0.078
Violations 0.565 ± 0.496 0.376 ± 0.485 0.122 ± 0.328 0.020 ± 0.140

MSE Gap 0.054 ± 0.041 0.057 ± 0.045 0.067 ± 0.054 0.075 ± 0.056
Violations 0.314 ± 0.464 0.152 ± 0.359 0.044 ± 0.205 0.013 ± 0.111

MAE+Penalty Gap 0.129 ± 0.081 0.144 ± 0.089 0.137 ± 0.087 0.127 ± 0.085
Violations 0.534 ± 0.499 0.376 ± 0.485 0.142 ± 0.350 0.019 ± 0.137

SL+Penalty Gap 0.054 ± 0.041 0.059 ± 0.045 0.069 ± 0.054 0.058 ± 0.044
Violations 0.304 ± 0.460 0.125 ± 0.331 0.044 ± 0.205 0.002 ± 0.045

SSLpen
Gap 0.104 ± 0.060 0.079 ± 0.056 0.093 ± 0.059 0.087 ± 0.058

Violations 0.149 ± 0.357 0.013 ± 0.113 0.004 ± 0.067 0.026 ± 0.159

PDL
Gap 0.086 ± 0.056 0.087 ± 0.058 0.109 ± 0.063 0.112 ± 0.062

Violations 0.043 ± 0.202 0.003 ± 0.055 0.001 ± 0.022 0.014 ± 0.118

SS-CMPE
Gap 0.072 ± 0.051 0.071 ± 0.052 0.066 ± 0.048 0.063 ± 0.049

Violations 0.146 ± 0.353 0.032 ± 0.176 0.024 ± 0.152 0.001 ± 0.022

SS-CMPE pen
Gap 0.073 ± 0.052 0.069 ± 0.051 0.073 ± 0.052 0.066 ± 0.050

Violations 0.035 ± 0.185 0.013 ± 0.113 0.002 ± 0.039 0.001 ± 0.022
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Table ST12: Average gap and constraint violations over test samples for models applied to the Grids18 Dataset for different
q values. The plot displays the mean values of the average gap and constraint violations, with standard deviations denoted by
±.

q 10 30 60 90
ILP Obj 4185.600003 4166.310635 4158.737261 4167.11386

MAE Gap 0.138 ± 0.087 0.142 ± 0.091 0.122 ± 0.081 0.102 ± 0.073
Violations 0.606 ± 0.489 0.389 ± 0.488 0.178 ± 0.383 0.019 ± 0.138

MSE Gap 0.056 ± 0.044 0.060 ± 0.047 0.069 ± 0.056 0.064 ± 0.050
Violations 0.332 ± 0.471 0.194 ± 0.395 0.178 ± 0.383 0.015 ± 0.122

MAE+Penalty Gap 0.143 ± 0.087 0.154 ± 0.093 0.145 ± 0.092 0.114 ± 0.080
Violations 0.551 ± 0.498 0.364 ± 0.481 0.172 ± 0.378 0.021 ± 0.145

SL+Penalty Gap 0.061 ± 0.047 0.064 ± 0.049 0.065 ± 0.050 0.133 ± 0.082
Violations 0.210 ± 0.407 0.087 ± 0.282 0.025 ± 0.158 0.025 ± 0.158

SSLpen
Gap 0.115 ± 0.065 0.074 ± 0.055 0.093 ± 0.060 0.123 ± 0.065

Violations 0.060 ± 0.238 0.182 ± 0.386 0.013 ± 0.115 0.005 ± 0.074

PDL
Gap 0.105 ± 0.063 0.126 ± 0.067 0.101 ± 0.062 0.118 ± 0.064

Violations 0.097 ± 0.295 0.001 ± 0.032 0.003 ± 0.050 0.005 ± 0.071

SS-CMPE
Gap 0.064 ± 0.047 0.072 ± 0.053 0.060 ± 0.046 0.065 ± 0.049

Violations 0.200 ± 0.400 0.029 ± 0.169 0.000 ± 0.000 0.001 ± 0.032

SS-CMPE pen
Gap 0.067 ± 0.051 0.067 ± 0.051 0.078 ± 0.055 0.075 ± 0.053

Violations 0.017 ± 0.129 0.019 ± 0.137 0.002 ± 0.039 0.000 ± 0.000

Table ST13: Average gap and constraint violations over test samples for models applied to the AD Dataset for different q
values. The plot displays the mean values of the average gap and constraint violations, with standard deviations denoted by
±.

q 10 30 60 90
ILP Obj 2535.424 2526.023 2521.957 2519.917

MAE Gap 0.288 ± 0.061 0.276 ± 0.063 0.283 ± 0.061 0.270 ± 0.063
Violations 0.671 ± 0.470 0.457 ± 0.498 0.257 ± 0.437 0.046 ± 0.210

MSE Gap 0.204 ± 0.061 0.201 ± 0.063 0.204 ± 0.061 0.213 ± 0.059
Violations 0.336 ± 0.472 0.063 ± 0.243 0.069 ± 0.254 0.013 ± 0.111

MAE +Penalty Gap 0.294 ± 0.062 0.290 ± 0.066 0.277 ± 0.061 0.274 ± 0.061
Violations 0.600 ± 0.490 0.468 ± 0.499 0.271 ± 0.444 0.039 ± 0.194

SL+Penalty Gap 0.216 ± 0.061 0.213 ± 0.063 0.220 ± 0.061 0.229 ± 0.060
Violations 0.085 ± 0.278 0.041 ± 0.197 0.021 ± 0.142 0.005 ± 0.074

SSLpen
Gap 0.135 ± 0.055 0.140 ± 0.057 0.142 ± 0.054 0.134 ± 0.055

Violations 0.244 ± 0.430 0.143 ± 0.350 0.054 ± 0.226 0.005 ± 0.074

PDL
Gap 0.148 ± 0.056 0.152 ± 0.056 0.146 ± 0.055 0.139 ± 0.054

Violations 0.055 ± 0.228 0.006 ± 0.080 0.013 ± 0.113 0.004 ± 0.063

SS-CMPE
Gap 0.135 ± 0.055 0.131 ± 0.057 0.131 ± 0.055 0.131 ± 0.054

Violations 0.102 ± 0.302 0.025 ± 0.155 0.005 ± 0.071 0.003 ± 0.055

SS-CMPE pen
Gap 0.129 ± 0.054 0.136 ± 0.057 0.130 ± 0.054 0.133 ± 0.054

Violations 0.017 ± 0.127 0.004 ± 0.063 0.000 ± 0.000 0.000 ± 0.000
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Table ST14: Average gap and constraint violations over test samples for models applied to the BBC Dataset for different q
values. The plot displays the mean values of the average gap and constraint violations, with standard deviations denoted by
±.

q 10 30 60 90
ILP Obj 890.289 880.270 875.668 872.118

MAE Gap 0.053 ± 0.037 0.046 ± 0.034 0.043 ± 0.032 0.045 ± 0.034
Violations 0.779 ± 0.415 0.624 ± 0.485 0.414 ± 0.493 0.165 ± 0.371

MSE Gap 0.036 ± 0.027 0.036 ± 0.028 0.037 ± 0.028 0.037 ± 0.029
Violations 0.924 ± 0.265 0.854 ± 0.354 0.578 ± 0.494 0.204 ± 0.403

MAE+Penalty Gap 0.047 ± 0.036 0.044 ± 0.034 0.041 ± 0.031 0.040 ± 0.031
Violations 0.657 ± 0.475 0.557 ± 0.497 0.384 ± 0.486 0.151 ± 0.358

SL+Penalty Gap 0.036 ± 0.028 0.036 ± 0.028 0.037 ± 0.030 0.037 ± 0.029
Violations 0.919 ± 0.272 0.854 ± 0.354 0.578 ± 0.494 0.204 ± 0.403

SSLpen
Gap 0.041 ± 0.032 0.042 ± 0.032 0.038 ± 0.030 0.039 ± 0.030

Violations 0.516 ± 0.500 0.393 ± 0.488 0.408 ± 0.492 0.130 ± 0.336

PDL
Gap 0.043 ± 0.033 0.051 ± 0.036 0.045 ± 0.034 0.044 ± 0.033

Violations 0.336 ± 0.472 0.160 ± 0.366 0.149 ± 0.356 0.029 ± 0.169

SS-CMPE
Gap 0.038 ± 0.029 0.043 ± 0.032 0.042 ± 0.033 0.040 ± 0.031

Violations 0.316 ± 0.495 0.239 ± 0.427 0.108 ± 0.310 0.044 ± 0.206

SS-CMPE pen
Gap 0.038 ± 0.030 0.043 ± 0.032 0.044 ± 0.033 0.040 ± 0.031

Violations 0.074 ± 0.263 0.067 ± 0.250 0.056 ± 0.229 0.002 ± 0.045

Table ST15: Average gap and constraint violations over test samples for models applied to the 20 Newsgroup Dataset for
different q values. The plot displays the mean values of the average gap and constraint violations, with standard deviations
denoted by ±.

q 10 30 60 90
ILP Obj 928.386 924.439 923.173 921.754

MAE Gap 0.044 ± 0.034 0.046 ± 0.036 0.047 ± 0.035 0.048 ± 0.037
Violations 0.470 ± 0.499 0.176 ± 0.381 0.049 ± 0.215 0.001 ± 0.022

MSE Gap 0.050 ± 0.038 0.053 ± 0.039 0.051 ± 0.038 0.051 ± 0.037
Violations 0.639 ± 0.480 0.403 ± 0.491 0.142 ± 0.349 0.008 ± 0.089

MAE+Penalty Gap 0.044 ± 0.035 0.047 ± 0.036 0.047 ± 0.036 0.047 ± 0.035
Violations 0.455 ± 0.498 0.181 ± 0.386 0.046 ± 0.210 0.001 ± 0.022

SL+Penalty Gap 0.046 ± 0.036 0.047 ± 0.035 0.046 ± 0.036 0.044 ± 0.034
Violations 0.573 ± 0.495 0.384 ± 0.486 0.161 ± 0.367 0.015 ± 0.122

SSLpen
Gap 0.045 ± 0.036 0.046 ± 0.036 0.045 ± 0.035 0.046 ± 0.035

Violations 0.386 ± 0.487 0.139 ± 0.346 0.024 ± 0.152 0.002 ± 0.039

PDL
Gap 0.043 ± 0.035 0.046 ± 0.036 0.046 ± 0.036 0.046 ± 0.036

Violations 0.278 ± 0.448 0.129 ± 0.335 0.028 ± 0.165 0.001 ± 0.032

SS-CMPE
Gap 0.043 ± 0.034 0.045 ± 0.035 0.044 ± 0.034 0.044 ± 0.034

Violations 0.317 ± 0.465 0.086 ± 0.280 0.019 ± 0.137 0.001 ± 0.032

SS-CMPE pen
Gap 0.044 ± 0.033 0.045 ± 0.035 0.046 ± 0.035 0.045 ± 0.034

Violations 0.069 ± 0.254 0.054 ± 0.227 0.007 ± 0.083 0.001 ± 0.022
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Table ST16: Average gap and constraint violations over test samples for models applied to the Webkb Dataset for different q
values. The plot displays the mean values of the average gap and constraint violations, with standard deviations denoted by
±.

q 10 30 60 90
ILP Obj 828.463 824.361 825.517 823.917

MAE Gap 0.057 ± 0.043 0.057 ± 0.043 0.058 ± 0.043 0.062 ± 0.044
Violations 0.613 ± 0.487 0.502 ± 0.500 0.249 ± 0.433 0.046 ± 0.210

MSE Gap 0.065 ± 0.046 0.069 ± 0.046 0.066 ± 0.045 0.065 ± 0.045
Violations 0.695 ± 0.461 0.473 ± 0.499 0.210 ± 0.407 0.018 ± 0.133

MAE+Penalty Gap 0.058 ± 0.042 0.058 ± 0.042 0.059 ± 0.043 0.061 ± 0.044
Violations 0.471 ± 0.499 0.395 ± 0.489 0.211 ± 0.408 0.041 ± 0.197

SL+Penalty Gap 0.054 ± 0.042 0.054 ± 0.041 0.054 ± 0.040 0.054 ± 0.040
Violations 0.584 ± 0.493 0.378 ± 0.485 0.174 ± 0.380 0.018 ± 0.131

SSLpen
Gap 0.058 ± 0.043 0.057 ± 0.041 0.057 ± 0.042 0.057 ± 0.042

Violations 0.360 ± 0.480 0.217 ± 0.413 0.082 ± 0.274 0.015 ± 0.120

PDL
Gap 0.063 ± 0.045 0.060 ± 0.044 0.058 ± 0.042 0.057 ± 0.042

Violations 0.149 ± 0.357 0.096 ± 0.295 0.056 ± 0.229 0.013 ± 0.115

SS-CMPE
Gap 0.059 ± 0.043 0.058 ± 0.043 0.056 ± 0.042 0.056 ± 0.042

Violations 0.169 ± 0.374 0.050 ± 0.218 0.026 ± 0.159 0.004 ± 0.063

SS-CMPE pen
Gap 0.062 ± 0.045 0.061 ± 0.044 0.057 ± 0.042 0.053 ± 0.040

Violations 0.074 ± 0.263 0.029 ± 0.169 0.001 ± 0.032 0.001 ± 0.022

Table ST17: Average gap and constraint violations over test samples for models applied to the DNA Dataset for different q
values. The plot displays the mean values of the average gap and constraint violations, with standard deviations denoted by
±.

q 10 30 60 90
ILP Obj 222.848 221.635 221.114 220.625

MAE Gap 0.138 ± 0.109 0.142 ± 0.109 0.136 ± 0.109 0.141 ± 0.111
Violations 0.444 ± 0.497 0.448 ± 0.497 0.286 ± 0.452 0.114 ± 0.317

MSE Gap 0.138 ± 0.112 0.140 ± 0.112 0.139 ± 0.111 0.139 ± 0.110
Violations 0.506 ± 0.500 0.565 ± 0.496 0.322 ± 0.467 0.113 ± 0.317

MAE+Penalty Gap 0.140 ± 0.111 0.136 ± 0.106 0.143 ± 0.111 0.137 ± 0.113
Violations 0.444 ± 0.497 0.448 ± 0.497 0.286 ± 0.452 0.114 ± 0.317

SL+Penalty Gap 0.135 ± 0.109 0.140 ± 0.112 0.141 ± 0.111 0.143 ± 0.115
Violations 0.434 ± 0.496 0.494 ± 0.500 0.281 ± 0.450 0.089 ± 0.285

SSLpen
Gap 0.140 ± 0.115 0.141 ± 0.111 0.146 ± 0.116 0.143 ± 0.118

Violations 0.048 ± 0.214 0.062 ± 0.241 0.014 ± 0.118 0.004 ± 0.067

PDL
Gap 0.140 ± 0.113 0.141 ± 0.113 0.139 ± 0.112 0.144 ± 0.120

Violations 0.287 ± 0.452 0.129 ± 0.335 0.003 ± 0.055 0.006 ± 0.077

SS-CMPE
Gap 0.138 ± 0.113 0.138 ± 0.108 0.137 ± 0.106 0.139 ± 0.109

Violations 0.046 ± 0.210 0.017 ± 0.129 0.012 ± 0.109 0.008 ± 0.089

SS-CMPE pen
Gap 0.139 ± 0.116 0.139 ± 0.113 0.140 ± 0.112 0.139 ± 0.113

Violations 0.013 ± 0.115 0.002 ± 0.045 0.001 ± 0.022 0.001 ± 0.022
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D.B Optimality Gap And Violations in Self-Supervised Methods for Different q Values

(a) Optimality Gap (avg %) and Average
Violations for Grids UAI networks

(b) Opt. Gap (avg %) and Avg. Violations
for Segmentation UAI networks

(c) Optimality Gap (avg %) and Average
Violations for Tractable Models

Figure SF5: Visualization of Optimality Gap (average %) and Average Violations for Self-Supervised Methods across
different q values. Points closer to the origin indicate better performance.

In the scatter plots depicted in Figure SF5, three distinct evaluations of the optimality gap against the average violations for
various self-supervised methods across different q values are visualized. Points positioned closer to the origin indicate better
performance, with reduced optimality gaps and fewer violations. In Figure SF5(a), focused on Grids UAI networks, the
SS-CMPE pen method generally occupies a position near the origin, indicating its commendable performance in this setting.
The SS-CMPE method exhibits a comparable performance to the SS-CMPE pen method, with occasional high levels of
violations observed in two instances.

In Figure SF5(b), showcasing the Segmentation UAI networks, the SS-CMPE and SS-CMPE pen methods again demonstrate
superiority, particularly evident by their prevalence near the origin. Finally, in Figure SF5(c) related to tractable models,
the SS-CMPE pen method often achieves optimal placement close to the origin, reflecting a balanced performance. These
evaluations provide critical insights into the effectiveness and robustness of the proposed self-supervised methods across
different problems.
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Abstract

Probabilistic circuits (PCs) such as sum-product networks
efficiently represent large multi-variate probability distribu-
tions. They are preferred in practice over other probabilistic
representations, such as Bayesian and Markov networks, be-
cause PCs can solve marginal inference (MAR) tasks in time
that scales linearly in the size of the network. Unfortunately,
the most probable explanation (MPE) task and its general-
ization, the marginal maximum-a-posteriori (MMAP) infer-
ence task remain NP-hard in these models. Inspired by the
recent work on using neural networks for generating near-
optimal solutions to optimization problems such as integer
linear programming, we propose an approach that uses neu-
ral networks to approximate MMAP inference in PCs. The
key idea in our approach is to approximate the cost of an as-
signment to the query variables using a continuous multilin-
ear function and then use the latter as a loss function. The two
main benefits of our new method are that it is self-supervised,
and after the neural network is learned, it requires only lin-
ear time to output a solution. We evaluate our new approach
on several benchmark datasets and show that it outperforms
three competing linear time approximations: max-product in-
ference, max-marginal inference, and sequential estimation,
which are used in practice to solve MMAP tasks in PCs.

Introduction
Probabilistic circuits (PCs) (Choi, Vergari, and Van den
Broeck 2020) such as sum-product networks (SPNs) (Poon
and Domingos 2011), arithmetic circuits (Darwiche 2003),
AND/OR graphs (Dechter and Mateescu 2007), cutset net-
works (Rahman, Kothalkar, and Gogate 2014), and proba-
bilistic sentential decision diagrams (Kisa et al. 2014) rep-
resent a class of tractable probabilistic models which are
often used in practice to compactly encode a large multi-
dimensional joint probability distribution. Even though all
of these models admit linear time computation of marginal
probabilities (MAR task), only some of them (Vergari et al.
2021; Peharz 2015), specifically those without any latent
variables or having specific structural properties, e.g., cut-
set networks, selective SPNs (Peharz et al. 2016), AND/OR
graphs having small contexts, etc., admit tractable most

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

probable explanation (MPE) inference1.
However, none of these expressive PCs can efficiently

solve the marginal maximum-a-posteriori (MMAP) task (Pe-
harz 2015; Vergari et al. 2021), a task that combines MAR
and MPE inference. More specifically, the distinction be-
tween MPE and MMAP tasks is that, given observations
over a subset of variables (evidence), the MPE task aims to
find the most likely assignment to all the non-evidence vari-
ables. In contrast, in the MMAP task, the goal is to find the
most likely assignment to a subset of non-evidence variables
known as the query variables, while marginalizing out non-
evidence variables that are not part of the query. The MMAP
problem has numerous real-world applications, especially
in health care, natural language processing, computer vi-
sion, linkage analysis and diagnosis where hidden variables
are present and need to be marginalized out (Bioucas-Dias
and Figueiredo 2016; Kiselev and Poupart 2014; Lee, Mari-
nescu, and Dechter 2014; Ping, Liu, and Ihler 2015).

In terms of computational complexity, both MPE and
MMAP tasks are at least NP-hard in SPNs, a popular class
of PCs (Peharz 2015; Conaty, de Campos, and Mauá 2017).
Moreover, it is also NP-hard to approximate MMAP in SPNs
to 2n

ω

for fixed 0 → ω < 1, where n is the input size (Conaty,
de Campos, and Mauá 2017; Mei, Jiang, and Tu 2018). It is
also known that the MMAP task is much harder than the
MPE task and is NP-hard even on models such as cutset net-
works and AND/OR graphs that admit linear time MPE in-
ference (Park and Darwiche 2004; de Campos 2011).

To date, both exact and approximate methods have been
proposed in literature for solving the MMAP task in PCs.
Notable exact methods include branch-and-bound search
(Mei, Jiang, and Tu 2018), reformulation approaches which
encode the MMAP task as other combinatorial optimization
problems with widely available solvers (Mauá et al. 2020)
and circuit transformation and pruning techniques (Choi,
Friedman, and Van den Broeck 2022). These methods can
be quite slow in practice and are not applicable when fast,
real-time inference is desired. As a result, approximate ap-
proaches that require only a few passes over the PC are of-
ten used in practice. A popular approximate approach is to

1The MPE inference task is also called full maximum-a-
posteriori (full MAP) inference in literature. In this paper, we adopt
the convention of calling it MPE.



compute an MPE solution over both the query and unob-
served variables and then project the MPE solution over the
query variables (Poon and Domingos 2011; Rahman, Jin,
and Gogate 2019). Although this approach can provide fast
answers at query time, it often yields MMAP solutions that
are far from optimal.

In this paper, we propose to address the limitations of ex-
isting approximate methods for MMAP inference in PCs
by using neural networks (NNs), leveraging recent work
in the learning to optimize literature (Li and Malik 2016;
Fioretto, Mak, and Hentenryck 2020; Donti, Rolnick, and
Kolter 2020; Zamzam and Baker 2020; Park and Henten-
ryck 2023). In particular, several recent works have shown
promising results in using NNs to solve both constrained and
unconstrained optimization problems (see Park and Henten-
ryck (2023) and the references therein).

The high-level idea in these works is the following: given
data, train NNs, either in a supervised or self-supervised
manner, and then use them at test time to predict high-
quality, near-optimal solutions to future optimization prob-
lems. A number of reasons have motivated this idea of learn-
ing to optimize using NNs: 1) NNs are good at approxi-
mating complex functions (distributions), 2) once trained,
they can be faster at answering queries than search-based
approaches, and 3) with ample data, NNs can learn accurate
mappings of inputs to corresponding outputs. This has led
researchers to employ NNs to approximately answer proba-
bilistic inference queries such as MAR and MPE in Bayesian
and Markov networks (Yoon et al. 2019; Cui et al. 2022). To
the best of our knowledge, there is no prior work on solving
MMAP in BNs, MNs, or PCs using NNs.

This paper makes the following contributions. First, we
propose to learn a neural network (NN) approximator for
solving the MMAP task in PCs. Second, by leveraging the
tractability of PCs, we devise a loss function whose gradient
can be computed in time that scales linearly in the size of
the PC, allowing fast gradient-based algorithms for learning
NNs. Third, our method trains an NN in a self-supervised
manner without having to rely on pre-computed solutions to
arbitrary MMAP problems, thus circumventing the need to
solve intractable MMAP problems in practice. Fourth, we
demonstrate via a large-scale experimental evaluation that
our proposed NN approximator yields higher quality MMAP
solutions as compared to existing approximate schemes.

Preliminaries

We use upper case letters (e.g., X) to denote random vari-
ables and corresponding lower case letters (e.g., x) to denote
an assignment of a value to a variable. We use bold upper
case letters (e.g., X) to denote a set of random variables and
corresponding bold lower case letters (e.g., x) to denote an
assignment of values to all variables in the set. Given an as-
signment x to all variables in X and a variable Y ↑ X, let
xY denote the projection of x on Y . We assume that all ran-
dom variables take values from the set {0, 1}; although note
that it is easy to extend our method to multi-valued variables.

Probabilistic Circuits
A probabilistic circuit (PC) M (Choi, Vergari, and Van den
Broeck 2020) defined over a set of variables X represents a
joint probability distribution over X using a rooted directed
acyclic graph. The graph consists of three types of nodes:
internal sum nodes that are labeled by +, internal product
nodes that are labeled by ↓, and leaf nodes that are labeled
by either X or ¬X where X ↑ X. Sum nodes represent
conditioning, and an edge into a sum node n from its child
node m is labeled by a real number ε(m,n) > 0. Given an
internal node (either a sum or product node) n, let ch(n)
denote the set of children of n. We assume that each sum
node n is normalized and satisfies the following property:∑

m→ch(n) ε(m,n) = 1.
In this paper, we focus on a class of PCs which are smooth

and decomposable (Choi, Vergari, and Van den Broeck
2020; Vergari et al. 2021). Examples of such PCs include
sum-product networks (Poon and Domingos 2011; Rahman
and Gogate 2016b), mixtures of cutset networks (Rahman,
Kothalkar, and Gogate 2014; Rahman and Gogate 2016a),
and arithmetic circuits obtained by compiling probabilis-
tic graphical models (Darwiche 2003). These PCs admit
tractable marginal inference, a key property that we lever-
age in our proposed method.

Definition 1. We say that a sum or a product node n is de-
fined over a variable X if there exists a directed path from n
to a leaf node labeled either by X or ¬X . A PC is smooth if
each sum node is such that its children are defined over the
same set of variables. A PC is decomposable if each prod-
uct node is such that its children are defined over disjoint
subsets of variables.

Example 1. Figure 1(a) shows a smooth and decomposable
probabilistic circuit defined over X = {X1, . . . , X4}.

Marginal Inference in PCs
Next, we describe how to compute the probability of an as-
signment to a subset of variables in a smooth and decom-
posable PC. This task is called the marginal inference (MAR)
task. We begin by describing some additional notation.

Given a PC M defined over X, let S , P and L denote
the set of sum, product and leaf nodes of M respectively.
Let Q ↔ X. Given a node m and an assignment q, let
v(m,q) denote the value of m given q. Given a leaf node
n, let var(n) denote the variable associated with n and let
l(n,q) be a function, which we call leaf function, that is de-
fined as follows. l(n,q) equals 0 if any of the following two
conditions are satisfied: (1) the label of n is Q where Q ↑ Q

and q contains the assignment Q = 0; and (2) if the label of
n is ¬Q and q contains the assignment Q = 1. Otherwise,
it is equal to 1. Intuitively, the leaf function assigns all leaf
nodes that are inconsistent with the assignment q to 0 and
the remaining nodes, namely those that are consistent with
q and those that are not part of the query to 1.

Under this notation, and given a leaf function l(n,q), the
marginal probability of any assignment q w.r.t M, and de-
noted by pM(q) can be computed by performing the follow-
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Figure 1: (a) An example smooth and decomposable PC. The figure also shows value computation for answering the query
pM(X3 = 1, X4 = 0). The values of the leaf, sum, and product nodes are given in parentheses on their bottom, top, and
left, respectively. The value of the root node is the answer to the query. (b) QPC obtained from the PC given in (a) for query
variables {X3, X4}. For simplicity, here, we use an MMAP problem without any evidence. This is because a given evidence
can be incorporated into the PC by appropriately setting the leaf nodes. We also show value computations for the following leaf
initialization: Xc

3 = 0.99,¬Xc
3 = 0.01, Xc

4 = 0.05,¬Xc
4 = 0.95 and all other leaves are set to 1.

ing recursive value computations:

v(n,q) =

{
l(n,q) if n → L∑

m→ch(n) ω(m,n)v(m,q) if n → S∏
m→ch(n) v(m,q) if n → P

(1)

Let r denote the root node of M. Then, the probability of
q w.r.t. M, denoted by pM(q) equals v(r,q). Note that if
Q = X, then v(r,x) denotes the probability of the joint
assignment x to all variables in the PC. Thus

v(r,q) =
∑

y→{0,1}|Y|

v(r, (q,y))

where Y = X \Q and the notation (q,y) denotes the com-
position of the assignments to Q and Y respectively.

Since the recursive value computations require only one
bottom-up pass over the PC, MAR inference is tractable or
linear time in smooth and decomposable PCs.

Example 2. Figure 1(a) shows bottom-up, recursive value
computations for computing the probability of the assign-
ment (X3 = 1, X4 = 0) in our running example. Here, the
leaf nodes ¬X3 and X4 are assigned to 0 and all other leaf
nodes are assigned to 1. The number in parentheses at the
top, left, and bottom of each sum, product and leaf nodes re-
spectively shows the value of the corresponding node. The
value of the root node equals pM(X3 = 1, X4 = 0).

Marginal Maximum-a-Posteriori (MMAP)
Inference in PCs
Given a PC M defined over X, let E ↔ X and Q ↔ X

denote the set of evidence and query variables respectively
such that E ↗ Q = ↘. Let H = X \ (Q ≃ E) denote the
set of hidden variables. Given an assignment e to the evi-
dence variables (called evidence), the MMAP task seeks to

find an assignment q to Q such that the probability of the
assignment (e,q) w.r.t. M is maximized. Mathematically,

MMAP(Q, e) = argmax
q

pM(e,q) (2)

=argmax
q

∑

h→{0,1}|H|

pM(e,q,h) (3)

If H = ↘ (namely Q is the set of non-evidence variables),
then MMAP corresponds to the most probable explanation
(MPE) task. It is known that both MMAP and MPE tasks are
at least NP-hard in smooth and decomposable PCs (Park and
Darwiche 2004; de Campos 2011; Peharz 2015), and even
NP-hard to approximate (Conaty, de Campos, and Mauá
2017; Mei, Jiang, and Tu 2018).

A popular approach to solve the MMAP task in PCs is to
replace the sum (

∑
) operator with the max operator during

bottom-up, recursive value computations and then perform-
ing a second top-down pass to find the assignment (Poon and
Domingos 2011).

A Neural Optimizer for MMAP in PCs
In this section, we introduce a learning-based approach us-
ing deep neural networks (NNs) to approximately solve the
MMAP problem in PCs. Formally, the NN represents a func-
tion fω(.) that is parameterized by ϑ, and takes an assign-
ment e over the evidence variables as input and outputs an
assignment q over the query variables. Our goal is to design
generalizable, continuous loss functions for updating the pa-
rameters of the NN such that once learned, at test time, given
an assignment e to the evidence variables as input, the NN
outputs near-optimal solutions to the MMAP problem.

In this paper, we assume that the sets of evidence(
E = {Ei}Ni=1

)
and query

(
Q = {Qj}Mj=1

)
variables are

known a priori and do not change at both training and test



time. We leave as future work the generalization of our ap-
proach that can handle variable length, arbitrarily chosen ev-
idence, and query sets. Also, note that our proposed method
does not depend on the particular NN architecture used, and
we only require that each output node is a continuous quan-
tity in the range [0, 1] and uses a differentiable activation
function (e.g., the sigmoid function).

We can learn the parameters of the given NN either in a
supervised manner or in a self-supervised manner. However,
the supervised approach is impractical, as described below.

In the supervised setting, we assume that we are given
training data D = {⇐e1,q↑

1⇒, . . . , ⇐ed,q↑
d⇒}, where each

input ei is an assignment to the evidence variables, and
each (label) q

↑
i is an optimal solution to the correspond-

ing MMAP task, namely q
↑
i = MMAP(Q, ei). We then use

supervised loss functions such as the mean-squared-error
(MSE)

∑d
i=1 ⇑q↑

i ⇓ q
c
i )⇑22/d and the mean-absolute-error

(MAE)
∑d

i=1 ⇑q↑
i ⇓ q

c
i⇑1/d where q

c
i is the predicted as-

signment (note that qc
i is continuous), and standard gradient-

based methods to learn the parameters. Although supervised
approaches allow us to use simple-to-implement loss func-
tions, they are impractical if the number of query variables
is large because they require access to the exact solutions to
several intractable MMAP problems2. We therefore propose
to use a self-supervised approach.

A Self-Supervised Loss Function for PCs
In the self-supervised setting, we need access to training
data in the form of assignments to the evidence variables,
i.e., D↓ = {e1, . . . , ed}. Since smooth and decomposable
PCs admit perfect sampling, these assignments can be eas-
ily sampled from the PC via top-down AND/OR sampling
(Gogate and Dechter 2012). The latter yields an assignment
x over all the random variables in the PC. Then we simply
project x on the evidence variables E to yield a training ex-
ample e. Because each training example can be generated in
time that scales linearly with the size of the PC, in practice,
our proposed self-supervised approach is likely to have ac-
cess to much larger number of training examples compared
to the supervised approach.

Let qc denote the MMAP assignment predicted by the
NN given evidence e ↑ D↓ where q

c ↑ [0, 1]M . In MMAP
inference, given e, we want to find an assignment q such
that lnpM(e,q) is maximized, namely, ⇓ lnpM(e,q) is
minimized. Thus, a natural loss function that we can use is
⇓ lnpM(e,q). Unfortunately, the NN outputs a continuous
vector qc and as a result pM(e,qc) is not defined. There-
fore, we cannot use ⇓ lnpM(e,qc) as a loss function.

One approach to circumvent this issue is to use a threshold
(say 0.5) to convert each continuous quantity in the range
[0,1] to a binary one. A problem with this approach is that
the threshold function is not differentiable.

Therefore, we propose to construct a smooth, differen-
tiable loss function that given q

c = (qc1, . . . , q
c
M ) ap-

2Note that the training data used to train the NN in the super-
vised setting is different from the training data used to learn the PC.
In particular, in the data used to train the PC, the assignments to the
query variables Q may not be optimal solutions of MMAP(Q, e).

proximates ⇓ lnpM(e,q) where q = (q1 = [qc1 >
0.5], . . . , qM = [qcM > 0.5]) and [qci > 0.5] is an indica-
tor function which is 1 if qci > 0.5 and 0 otherwise. The
key idea in our approach is to construct a new PC, which we
call Query-specific PC (QPC) by replacing all binary leaf
nodes associated with the query variables in the original PC,
namely those labeled by Q and ¬Q where Q ↑ Q, with con-
tinuous nodes Qc ↑ [0, 1] and ¬Qc ↑ [0, 1]. Then our pro-
posed loss function is obtained using value computations (at
the root node of the QPC) via a simple modification of the
leaf function of the PC. At a high level, our new leaf func-
tion assigns each leaf node labeled by Qc

j such that Qj ↑ Q

to its corresponding estimate qcj , obtained from the NN and
each leaf node labeled by ¬Qc

j such that Qj ↑ Q to 1⇓ qcj .
Formally, for the QPC, we propose to use leaf function

l↓(n, (e,qc)) defined as follows:
1. If the label of n is Qc

j such that Qj ↑ Q then
l↓(n, (e,qc)) = qcj .

2. If n is labeled by ¬Qc
j such that Qj ↑ Q then

l↓(n, (e,qc)) = 1⇓ qcj .
3. If n is labeled by Ek such that Ek ↑ E and the assign-

ment Ek = 0 is in e then l↓(n, (e,qc)) = 0.
4. If n is labeled by ¬Ek such that Ek ↑ E and the assign-

ment Ek = 1 is in e then l↓(n, (e,qc)) = 0.
5. If conditions (1)-(4) are not met then l↓(n, (e,qc)) = 1.
The value of each node n in the QPC, denoted by
v↓(n, (e,qc)) is given by a similar recursion to the one given
in Eq. (1) for PCs, except that the leaf function l(n,q) is re-
placed by the new (continuous) leaf function l↓(n, (e,qc)).
Formally, v↓(n, (e,qc)) is given by

v↓(n, (e,qc))

=






l↓(n, (e,qc)) if n ↑ L∑
m→ch(n) ε(m,n)v↓(m, (e,qc)) if n ↑ S∏
m→ch(n) v

↓(n, (e,qc)) if n ↑ P
(4)

Let r denote the root node of M, then we propose to use
⇓ ln v↓(r, (e,qc)) as a loss function.
Example 3. Figure 1(b) shows the QPC corresponding to
the PC shown in Figure 1(a). We also show value computa-
tions for the assignment (Xc

3 = 0.99, Xc
4 = 0.05).

Tractable Gradient Computation
Our proposed loss function is smooth and continuous be-
cause by construction, it is a negative logarithm of a multilin-
ear function over qc. Next, we show that the partial deriva-
tive of the function w.r.t. qcj can be computed in linear time in
the size of the QPC3. More specifically, in order to compute
the partial derivative of QPC with respect to q

c
j , we simply

have to use a new leaf function which is identical to l↓ except
that if the label of a leaf node n is Qc

j then we set its value
to 1 (instead of qcj ) and if it is ¬Qc

j then we set its value ⇓1
(instead of 1 ⇓ qcj ). We then perform bottom-up recursive

3Recall that qcj is an output node of the NN and therefore back-
propagation over the NN can be performed in time that scales lin-
early with the size of the NN and the QPC



value computations over the QPC and the value of the root
node is the partial derivative of the QPC with respect to q

c
j .

In summary, it is straight-forward to show that:
Proposition 1. The gradient of the loss function
⇓ ln v↓(r, (e,qc)) w.r.t. q

c
j can be computed in time

and space that scales linearly with the size of M.
Example 4. The partial derivative of the QPC given in fig-
ure 1(b) w.r.t. xc

3 given (Xc
3 = 0.99, Xc

4 = 0.05) can be
obtained by setting the leaf nodes Xc

3 to 1 and ¬Xc
3 to ⇓1,

assigning all other leaves to the values shown in Figure 1(b)
and then performing value computations. After the value
computation phase, the value of the root node will equal the
partial derivative of the QPC w.r.t. xc

3.

Improving the Loss Function
As mentioned earlier, our proposed loss function is a contin-
uous approximation of the discrete function ⇓ ln v(r, (e,q))
where q = (q1 = [qc1 > 0.5], . . . , qM = [qcM > 0.5]) and
the difference between the two is minimized iff q = q

c.
Moreover, since the set of continuous assignments includes
the discrete assignments, it follows that:

min
qc

{⇓ ln v↓(r, (e,qc))} → min
q

{⇓ ln v(r, (e,q))} (5)

Since the right-hand side of the inequality given in (5) solves
the MMAP task, we can improve our loss function by tight-
ening the lower bound. This can be accomplished using
an entropy-based penalty, controlled by a hyper-parameter
ϖ > 0, yielding the loss function

ϱ(qc) = ⇓ ln v↓(r, (e,qc))⇓

ϖ
M∑

j=1

qcj log(q
c
j) + (1⇓ qcj) log(1⇓ qcj) (6)

The second term in the expression given above is minimized
when each qcj is closer to 0 or 1 and is maximized when
qcj = 0.5. Therefore, it encourages 0/1 (discrete) solutions.
The hyperparameter ϖ controls the magnitude of the penalty.
When ϖ = 0, the above expression finds an assignment
based on the continuous approximation ⇓ ln v↓(r, (e,qc)).
On the other hand, when ϖ = ⇔ then only discrete so-
lutions are possible yielding a non-smooth loss function.
ϖ thus helps us trade the smoothness of our proposed loss
function with its distance to the true loss.

Experiments
In this section, we describe and analyze the results of our
comprehensive experimental evaluation for assessing the
performance of our novel Self-Supervised learning based
MMAP solver for PCs, referred to as SSMP hereafter. We
begin by describing our experimental setup including com-
peting methods, evaluation criteria, as well as NN architec-
tures, datasets, and PCs used in our study.

Competing Methods
We use three polytime baseline methods from the PC and
probabilistic graphical models literature (Park and Darwiche

2004; Poon and Domingos 2011). We also compared the
impact of using the solutions computed by the three base-
line schemes as well our method SSMP as initial state for
stochastic hill climbing search.
Baseline 1: MAX Approximation (Max). In this scheme
(Poon and Domingos 2011), the MMAP assignment is de-
rived by substituting sum nodes with max nodes. During the
upward pass, a max node produces the maximum weighted
value from its children instead of their weighted sum. Sub-
sequently, the downward pass begins from the root and it-
eratively selects the highest-valued child of a max node (or
one of them), along with all children of a product node.
Baseline 2: Maximum Likelihood Approximation (ML)
(Park and Darwiche 2004) For each variable Q ↑ Q, we
first compute the marginal distribution pM(Q|e) and then
set Q to argmaxj→{0,1} pM(Q = j|e).
Baseline 3: Sequential Approximation (Seq) In this
scheme (Park and Darwiche 2004), we assign the query
variables one by one until no query variables remain unas-
signed. At each step, we choose an unassigned query vari-
able Qj ↑ Q that maximizes the probability pM(qj |e,y)
for one of its values qj and assign it to qj where y represents
the assignment to the previously considered query variables.
Stochastic Hill Climbing Search. We used the three base-
lines and our SSMP method as the initial state in stochas-
tic hill climbing search for MMAP inference described in
(Park and Darwiche 2004). The primary goal of this ex-
periment is to assess whether our scheme can assist local
search-based anytime methods in reaching better solutions
than other heuristic methods for initialization. In our exper-
iments, we ran stochastic hill climbing for 100 iterations for
each MMAP problem.

Evaluation Criteria
We evaluated the performance of the competing schemes
along two dimensions: log-likelihood scores and inference
times. Given evidence e and query answer q, the log-
likelihood score is given by ln pM(e,q).

Datasets and Probabilistic Circuits
We use twenty-two widely used binary datasets from the
tractable probabilistic models’ literature (Lowd and Davis
2010; Haaren and Davis 2012; Larochelle and Murray 2011;
Bekker et al. 2015) (we call them TPM datasets) as well
as the binarized MNIST (Salakhutdinov and Murray 2008),
EMNIST (Cohen et al. 2017) and CIFAR-10 (Krizhevsky,
Nair, and Hinton 2009) datasets. We used the DeeProb-kit
library (Loconte and Gala 2022) to learn a sum-product net-
work (our choice of PC) for each dataset. The number of
nodes in these learned PCs ranges from 46 to 22027.

For each PC and each test example in the 22 TPM
datasets, we generated two types of MMAP instances: MPE
instances in which H is empty and MMAP instances in
which H is not empty. We define query ratio, denoted by qr,
as the fraction of variables that are part of the query set. For
MPE, we selected qr from {0.1, 0.3, 0.5, 0.6, 0.7, 0.8, 0.9},
and for MMAP, we replaced 0.9 with 0.4 to avoid small H
and E. For generating MMAP instances, we used 50% of



Initial Hill Climbing Search
MPE MMAP MPE MMAP

Max SSMP ML Seq Max SSMP ML Seq Max SSMP ML Seq Max SSMP ML Seq
Max 0 64 33 14 0 46 23 10 0 40 13 9 0 27 10 16

SSMP 88 0 96 77 97 0 102 82 93 0 99 87 98 0 100 86
ML 6 49 0 15 3 34 0 10 19 37 0 14 12 26 0 17
Seq 105 63 105 0 117 53 117 0 85 44 82 0 89 39 90 0

Table 1: Contingency tables for competing methods across MPE and MMAP Problems, including initial and Hill Climbing
Search comparisons. Highlighted values represent results for SSMP.

the remaining variables as evidence variables (and for MPE
instances all remaining variables are evidence variables).

For the MNIST, EMNIST, and CIFAR-10 datasets, we
used qr = 0.7 and generated MPE instances only. More
specifically, we used the top 30% portion of the image as ev-
idence, leaving the bottom 70% portion as query variables.
Also, in order to reduce the training time for PCs, note that
for these datasets, we learned a PC for each class, yielding a
total of ten PCs for each dataset.

Neural Network Optimizers
For each PC and query ratio combination, we trained a cor-
responding neural network (NN) using the loss function de-
scribed in the previous section. Because we have 22 TPM
datasets and 7 query ratios for them, we trained 154 NNs for
the MPE task and 154 for the MMAP task. For the CIFAR-
10, MNIST and EMNIST datasets, we trained 10 NNs, one
for each PC (recall that we learned a PC for each class).

Because our learning method does not depend on the spe-
cific choice of neural network architectures, we use a fixed
neural network architecture across all experiments: fully
connected with four hidden layers having 128, 256, 512,
and 1024 nodes respectively. We used ReLU activation in
the hidden layers, sigmoid in the output layer, dropout for
regularization (Srivastava et al. 2014) and Adam optimizer
(Kingma and Ba 2017) with a standard learning rate sched-
uler for 50 epochs. All NNs were trained using PyTorch
(Paszke et al. 2019) on a single NVIDIA A40 GPU. We se-
lect a value for the hyperparameter ϖ used in our loss func-
tion (see equation (6)) via 5-fold cross validation.

Results on the TPM Datasets
We summarize our results for the competing schemes (3
baselines and SSMP) on the 22 TPM datasets using the first
two contingency tables given in Table 1, one for MPE and
one for MMAP. Detailed results are provided in the supple-
mentary material. Recall that we generated 154 test datasets
each for MPE and MMAP (22 PCs ↓ 7 qr values). In all
contingency tables, the number in the cell (i, j) equals the
number of times (out of 154) that the scheme in the i-th row
was better in terms of average log-likelihood score than the
scheme in the j-th column. The difference between 154 and
the sum of the numbers in the cells (i, j) and (j, i) equals the
number of times the scheme in the i-th row and j-th column
had identical log-likelihood scores.

From the MPE contingency table given in Table 1, we
observe that SSMP is superior to Max, ML, and Seq ap-
proximations. The Seq approximation is slightly better than

the Max approximation, and ML is the worst-performing
scheme. For the harder MMAP task, we see a similar order-
ing among the competing schemes (see Table 1) with SSMP
dominating other schemes. In particular, SSMP outperforms
the Max and ML approximations in almost two-thirds of the
cases and the Seq method in more than half of the cases.

We also investigate the effectiveness of SSMP and other
baseline approaches when employed as initialization strate-
gies for Hill Climbing Search. These findings are illustrated
in the last two contingency tables given in Table 1. Notably,
SSMP outperforms all other baseline approaches in nearly
two-thirds of the experiments for both MPE and MMAP
tasks. These results demonstrate that SSMP can serve as an
effective initialization technique for anytime local search-
based algorithms.

(a) MPE (b) MMAP

Figure 2: Heat map showing the % difference in log-
likelihood scores between SSMP and Max approximation.
Blue represents Max’s superiority (negative values) and red
indicates SSMP better performance (positive values).

In Figure 2, via a heat-map representation, we show a
more detailed performance comparison between SSMP and
the Max approximation, which is a widely used baseline for
MPE and MMAP inference in PCs. In the heat-map repre-
sentation, the y-axis represents the datasets (ordered by the
number of variables), while the x-axis shows the query ra-
tio. The values in each cell represent the percentage differ-
ence between the mean log-likelihood scores of SSMP and



CIFAR MNIST EMNIST
Max SSMP ML Seq Max SSMP ML Seq Max SSMP ML Seq

Max 0 0 0 2 0 1 0 1 0 1 0 5
SSMP 9 0 9 9 9 0 9 9 7 0 7 7
ML 0 0 0 2 0 1 0 1 0 1 0 5
Seq 7 0 7 0 9 1 9 0 3 1 3 0

Table 2: Contingency tables comparing competing methods for MPE on CIFAR, MNIST and EMNIST datasets. Highlighted
values represent results for SSMP.

the Max approximation. Formally, let llssmp and llmax de-
note the mean LL scores of SSMP and Max approximation
respectively, then the percentage difference is given by

%Diff. =
llssmp ⇓ llmax

|llmax|
↓ 100 (7)

From the heatmap for MPE given in Figure 2(a), we ob-
serve that SSMP is competitive with the Max approximation
when the size of the query set is small. However, as the num-
ber of query variables increases, signaling a more challeng-
ing problem, SSMP consistently outperforms or has similar
performance to the Max method across all datasets, except
for accidents, pumsb-star, and book.

The heatmaps for MMAP are illustrated in Figure 2(b).
We see a similar trend as the one for MPE; SSMP remains
competitive with the Max approximation, particularly when
the number of query variables is small. While SSMP outper-
forms (with some exceptions) the Max approximation when
the number of query variables is large.

Finally, we present inference times in the supplement. On
average SSMP requires in the order of 7-10 micro-seconds
for MMAP inference on an A40 GPU. The Max approxi-
mation takes 7 milli-seconds (namely, SSMP is almost 1000
times faster). In comparison, as expected, the Seq and ML
approximations are quite slow, requiring roughly 400 to 600
milliseconds to answer MPE and MMAP queries. In the case
of our proposed method (SSMP), during the inference pro-
cess, the size of the SPN holds no relevance; its time com-
plexity is linear in the size of the neural network. On the
contrary, for the alternative methods, the inference time is
intricately dependent on the size of the SPN.

Results on the CIFAR-10 Dataset
We binarized the CIFAR-10 dataset using a variational au-
toencoder having 512 bits. We then learned a PC for each of
the 10 classes; namely, we learned a PC conditioned on the
class variable. As mentioned earlier, we randomly set 70%
of the variables as query variables. The contingency table for
CIFAR-10 is shown in Table 2. We observe that SSMP dom-
inates all competing methods while the Seq approximation
is the second-best performing scheme (although note that
Seq is computationally expensive).

Results on the MNIST and EMNIST Datasets
Finally, we evaluated SSMP on the image completion task
using the Binarized MNIST (Salakhutdinov and Murray
2008) and the EMNIST datasets (Cohen et al. 2017). As
mentioned earlier, we used the top 30% of the image as ev-
idence and estimated the bottom 70% by solving the MPE

task over PCs using various competing methods. The con-
tingency tables for the MNIST and EMNIST datasets are
shown in Table 2. We observe that on the MNIST dataset,
SSMP is better than all competing schemes on 9 out of the
10 PCs, while it is inferior to all on one of them. On the EM-
NIST dataset, SSMP is better than all competing schemes on
7 out of the 10 PCs and inferior to all on one of the PCs.
Detailed results on the image datasets, including qualitative
comparisons, are provided in the supplement.

In summary, we find that, on average, our proposed
method (SSMP) is better than other baseline MPE/MMAP
approximations in terms of log-likelihood score. Moreover,
it is substantially better than the baseline methods when the
number of query variables is large. Also, once learned from
data, it is also significantly faster than competing schemes.

Conclusion and Future Work
In this paper, we introduced a novel self-supervised learning
algorithm for solving MMAP queries in PCs. Our contribu-
tions comprise a neural network approximator and a self-
supervised loss function which leverages the tractability of
PCs for achieving scalability. Notably, our method employs
minimal hyperparameters, requiring only one in the discrete
case. We conducted a comprehensive empirical evaluation
across various benchmarks; specifically, we experimented
with 22 binary datasets used in tractable probabilistic mod-
els community and three classic image datasets, MNIST,
EMNIST, and CIFAR-10. We compared our proposed neural
approximator to polytime baseline techniques and observed
that it is superior to the baseline methods in terms of log-
likelihood scores and is significantly better in terms of com-
putational efficiency. Additionally, we evaluated how our
approach performs when used as an initialization scheme
in stochastic hill climbing (local) search and found that it
improves the quality of solutions output by anytime local
search schemes. Our empirical results clearly demonstrated
the efficacy of our approach in both accuracy and speed.

Future work includes compiling PCs to neural net-
works for answering more complex queries that involve
constrained optimization; developing sophisticated self-
supervised loss functions; learning better NN architecture
for the given PC; generalizing our approach to arbitrarily
chosen query and evidence subsets; etc.
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